Representational aspects of depth and conditioning in normalizing flows

Frederic Koehler, Viraj Mehta, Andrej Risteski
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:5628-5636, 2021.

Abstract

Normalizing flows are among the most popular paradigms in generative modeling, especially for images, primarily because we can efficiently evaluate the likelihood of a data point. This is desirable both for evaluating the fit of a model, and for ease of training, as maximizing the likelihood can be done by gradient descent. However, training normalizing flows comes with difficulties as well: models which produce good samples typically need to be extremely deep – which comes with accompanying vanishing/exploding gradient problems. A very related problem is that they are often poorly \emph{conditioned}: since they are parametrized as invertible maps from $\mathbb{R}^d \to \mathbb{R}^d$, and typical training data like images intuitively is lower-dimensional, the learned maps often have Jacobians that are close to being singular. In our paper, we tackle representational aspects around depth and conditioning of normalizing flows: both for general invertible architectures, and for a particular common architecture, affine couplings. We prove that $\Theta(1)$ affine coupling layers suffice to exactly represent a permutation or $1 \times 1$ convolution, as used in GLOW, showing that representationally the choice of partition is not a bottleneck for depth. We also show that shallow affine coupling networks are universal approximators in Wasserstein distance if ill-conditioning is allowed, and experimentally investigate related phenomena involving padding. Finally, we show a depth lower bound for general flow architectures with few neurons per layer and bounded Lipschitz constant.

Cite this Paper


BibTeX
@InProceedings{pmlr-v139-koehler21a, title = {Representational aspects of depth and conditioning in normalizing flows}, author = {Koehler, Frederic and Mehta, Viraj and Risteski, Andrej}, booktitle = {Proceedings of the 38th International Conference on Machine Learning}, pages = {5628--5636}, year = {2021}, editor = {Meila, Marina and Zhang, Tong}, volume = {139}, series = {Proceedings of Machine Learning Research}, month = {18--24 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v139/koehler21a/koehler21a.pdf}, url = {https://proceedings.mlr.press/v139/koehler21a.html}, abstract = {Normalizing flows are among the most popular paradigms in generative modeling, especially for images, primarily because we can efficiently evaluate the likelihood of a data point. This is desirable both for evaluating the fit of a model, and for ease of training, as maximizing the likelihood can be done by gradient descent. However, training normalizing flows comes with difficulties as well: models which produce good samples typically need to be extremely deep – which comes with accompanying vanishing/exploding gradient problems. A very related problem is that they are often poorly \emph{conditioned}: since they are parametrized as invertible maps from $\mathbb{R}^d \to \mathbb{R}^d$, and typical training data like images intuitively is lower-dimensional, the learned maps often have Jacobians that are close to being singular. In our paper, we tackle representational aspects around depth and conditioning of normalizing flows: both for general invertible architectures, and for a particular common architecture, affine couplings. We prove that $\Theta(1)$ affine coupling layers suffice to exactly represent a permutation or $1 \times 1$ convolution, as used in GLOW, showing that representationally the choice of partition is not a bottleneck for depth. We also show that shallow affine coupling networks are universal approximators in Wasserstein distance if ill-conditioning is allowed, and experimentally investigate related phenomena involving padding. Finally, we show a depth lower bound for general flow architectures with few neurons per layer and bounded Lipschitz constant.} }
Endnote
%0 Conference Paper %T Representational aspects of depth and conditioning in normalizing flows %A Frederic Koehler %A Viraj Mehta %A Andrej Risteski %B Proceedings of the 38th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2021 %E Marina Meila %E Tong Zhang %F pmlr-v139-koehler21a %I PMLR %P 5628--5636 %U https://proceedings.mlr.press/v139/koehler21a.html %V 139 %X Normalizing flows are among the most popular paradigms in generative modeling, especially for images, primarily because we can efficiently evaluate the likelihood of a data point. This is desirable both for evaluating the fit of a model, and for ease of training, as maximizing the likelihood can be done by gradient descent. However, training normalizing flows comes with difficulties as well: models which produce good samples typically need to be extremely deep – which comes with accompanying vanishing/exploding gradient problems. A very related problem is that they are often poorly \emph{conditioned}: since they are parametrized as invertible maps from $\mathbb{R}^d \to \mathbb{R}^d$, and typical training data like images intuitively is lower-dimensional, the learned maps often have Jacobians that are close to being singular. In our paper, we tackle representational aspects around depth and conditioning of normalizing flows: both for general invertible architectures, and for a particular common architecture, affine couplings. We prove that $\Theta(1)$ affine coupling layers suffice to exactly represent a permutation or $1 \times 1$ convolution, as used in GLOW, showing that representationally the choice of partition is not a bottleneck for depth. We also show that shallow affine coupling networks are universal approximators in Wasserstein distance if ill-conditioning is allowed, and experimentally investigate related phenomena involving padding. Finally, we show a depth lower bound for general flow architectures with few neurons per layer and bounded Lipschitz constant.
APA
Koehler, F., Mehta, V. & Risteski, A.. (2021). Representational aspects of depth and conditioning in normalizing flows. Proceedings of the 38th International Conference on Machine Learning, in Proceedings of Machine Learning Research 139:5628-5636 Available from https://proceedings.mlr.press/v139/koehler21a.html.

Related Material