Learner-Private Convex Optimization

Jiaming Xu, Kuang Xu, Dana Yang
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:11570-11580, 2021.

Abstract

Convex optimization with feedback is a framework where a learner relies on iterative queries and feedback to arrive at the minimizer of a convex function. The paradigm has gained significant popularity recently thanks to its scalability in large-scale optimization and machine learning. The repeated interactions, however, expose the learner to privacy risks from eavesdropping adversaries that observe the submitted queries. In this paper, we study how to optimally obfuscate the learner’s queries in convex optimization with first-order feedback, so that their learned optimal value is provably difficult to estimate for the eavesdropping adversary. We consider two formulations of learner privacy: a Bayesian formulation in which the convex function is drawn randomly, and a minimax formulation in which the function is fixed and the adversary’s probability of error is measured with respect to a minimax criterion. We show that, if the learner wants to ensure the probability of the adversary estimating accurately be kept below 1/L, then the overhead in query complexity is additive in L in the minimax formulation, but multiplicative in L in the Bayesian formulation. Compared to existing learner-private sequential learning models with binary feedback, our results apply to the significantly richer family of general convex functions with full-gradient feedback. Our proofs are largely enabled by tools from the theory of Dirichlet processes, as well as more sophisticated lines of analysis aimed at measuring the amount of information leakage under a full-gradient oracle.

Cite this Paper


BibTeX
@InProceedings{pmlr-v139-xu21i, title = {Learner-Private Convex Optimization}, author = {Xu, Jiaming and Xu, Kuang and Yang, Dana}, booktitle = {Proceedings of the 38th International Conference on Machine Learning}, pages = {11570--11580}, year = {2021}, editor = {Meila, Marina and Zhang, Tong}, volume = {139}, series = {Proceedings of Machine Learning Research}, month = {18--24 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v139/xu21i/xu21i.pdf}, url = {https://proceedings.mlr.press/v139/xu21i.html}, abstract = {Convex optimization with feedback is a framework where a learner relies on iterative queries and feedback to arrive at the minimizer of a convex function. The paradigm has gained significant popularity recently thanks to its scalability in large-scale optimization and machine learning. The repeated interactions, however, expose the learner to privacy risks from eavesdropping adversaries that observe the submitted queries. In this paper, we study how to optimally obfuscate the learner’s queries in convex optimization with first-order feedback, so that their learned optimal value is provably difficult to estimate for the eavesdropping adversary. We consider two formulations of learner privacy: a Bayesian formulation in which the convex function is drawn randomly, and a minimax formulation in which the function is fixed and the adversary’s probability of error is measured with respect to a minimax criterion. We show that, if the learner wants to ensure the probability of the adversary estimating accurately be kept below 1/L, then the overhead in query complexity is additive in L in the minimax formulation, but multiplicative in L in the Bayesian formulation. Compared to existing learner-private sequential learning models with binary feedback, our results apply to the significantly richer family of general convex functions with full-gradient feedback. Our proofs are largely enabled by tools from the theory of Dirichlet processes, as well as more sophisticated lines of analysis aimed at measuring the amount of information leakage under a full-gradient oracle.} }
Endnote
%0 Conference Paper %T Learner-Private Convex Optimization %A Jiaming Xu %A Kuang Xu %A Dana Yang %B Proceedings of the 38th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2021 %E Marina Meila %E Tong Zhang %F pmlr-v139-xu21i %I PMLR %P 11570--11580 %U https://proceedings.mlr.press/v139/xu21i.html %V 139 %X Convex optimization with feedback is a framework where a learner relies on iterative queries and feedback to arrive at the minimizer of a convex function. The paradigm has gained significant popularity recently thanks to its scalability in large-scale optimization and machine learning. The repeated interactions, however, expose the learner to privacy risks from eavesdropping adversaries that observe the submitted queries. In this paper, we study how to optimally obfuscate the learner’s queries in convex optimization with first-order feedback, so that their learned optimal value is provably difficult to estimate for the eavesdropping adversary. We consider two formulations of learner privacy: a Bayesian formulation in which the convex function is drawn randomly, and a minimax formulation in which the function is fixed and the adversary’s probability of error is measured with respect to a minimax criterion. We show that, if the learner wants to ensure the probability of the adversary estimating accurately be kept below 1/L, then the overhead in query complexity is additive in L in the minimax formulation, but multiplicative in L in the Bayesian formulation. Compared to existing learner-private sequential learning models with binary feedback, our results apply to the significantly richer family of general convex functions with full-gradient feedback. Our proofs are largely enabled by tools from the theory of Dirichlet processes, as well as more sophisticated lines of analysis aimed at measuring the amount of information leakage under a full-gradient oracle.
APA
Xu, J., Xu, K. & Yang, D.. (2021). Learner-Private Convex Optimization. Proceedings of the 38th International Conference on Machine Learning, in Proceedings of Machine Learning Research 139:11570-11580 Available from https://proceedings.mlr.press/v139/xu21i.html.

Related Material