Modelling Non-Smooth Signals with Complex Spectral Structure

Wessel P. Bruinsma, Martin Tegnér, Richard E. Turner
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:5166-5195, 2022.

Abstract

The Gaussian Process Convolution Model (GPCM; Tobar et al., 2015a) is a model for signals with complex spectral structure. A significant limitation of the GPCM is that it assumes a rapidly decaying spectrum: it can only model smooth signals. Moreover, inference in the GPCM currently requires (1) a mean-field assumption, resulting in poorly calibrated uncertainties, and (2) a tedious variational optimisation of large covariance matrices. We redesign the GPCM model to induce a richer distribution over the spectrum with relaxed assumptions about smoothness: the Causal Gaussian Process Convolution Model (CGPCM) introduces a causality assumption into the GPCM, and the Rough Gaussian Process Convolution Model (RGPCM) can be interpreted as a Bayesian nonparametric generalisation of the fractional Ornstein-Uhlenbeck process. We also propose a more effective variational inference scheme, going beyond the mean-field assumption: we design a Gibbs sampler which directly samples from the optimal variational solution, circumventing any variational optimisation entirely. The proposed variations of the GPCM are validated in experiments on synthetic and real-world data, showing promising results.

Cite this Paper


BibTeX
@InProceedings{pmlr-v151-bruinsma22a, title = { Modelling Non-Smooth Signals with Complex Spectral Structure }, author = {Bruinsma, Wessel P. and Tegn\'er, Martin and Turner, Richard E.}, booktitle = {Proceedings of The 25th International Conference on Artificial Intelligence and Statistics}, pages = {5166--5195}, year = {2022}, editor = {Camps-Valls, Gustau and Ruiz, Francisco J. R. and Valera, Isabel}, volume = {151}, series = {Proceedings of Machine Learning Research}, month = {28--30 Mar}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v151/bruinsma22a/bruinsma22a.pdf}, url = {https://proceedings.mlr.press/v151/bruinsma22a.html}, abstract = { The Gaussian Process Convolution Model (GPCM; Tobar et al., 2015a) is a model for signals with complex spectral structure. A significant limitation of the GPCM is that it assumes a rapidly decaying spectrum: it can only model smooth signals. Moreover, inference in the GPCM currently requires (1) a mean-field assumption, resulting in poorly calibrated uncertainties, and (2) a tedious variational optimisation of large covariance matrices. We redesign the GPCM model to induce a richer distribution over the spectrum with relaxed assumptions about smoothness: the Causal Gaussian Process Convolution Model (CGPCM) introduces a causality assumption into the GPCM, and the Rough Gaussian Process Convolution Model (RGPCM) can be interpreted as a Bayesian nonparametric generalisation of the fractional Ornstein-Uhlenbeck process. We also propose a more effective variational inference scheme, going beyond the mean-field assumption: we design a Gibbs sampler which directly samples from the optimal variational solution, circumventing any variational optimisation entirely. The proposed variations of the GPCM are validated in experiments on synthetic and real-world data, showing promising results. } }
Endnote
%0 Conference Paper %T Modelling Non-Smooth Signals with Complex Spectral Structure %A Wessel P. Bruinsma %A Martin Tegnér %A Richard E. Turner %B Proceedings of The 25th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2022 %E Gustau Camps-Valls %E Francisco J. R. Ruiz %E Isabel Valera %F pmlr-v151-bruinsma22a %I PMLR %P 5166--5195 %U https://proceedings.mlr.press/v151/bruinsma22a.html %V 151 %X The Gaussian Process Convolution Model (GPCM; Tobar et al., 2015a) is a model for signals with complex spectral structure. A significant limitation of the GPCM is that it assumes a rapidly decaying spectrum: it can only model smooth signals. Moreover, inference in the GPCM currently requires (1) a mean-field assumption, resulting in poorly calibrated uncertainties, and (2) a tedious variational optimisation of large covariance matrices. We redesign the GPCM model to induce a richer distribution over the spectrum with relaxed assumptions about smoothness: the Causal Gaussian Process Convolution Model (CGPCM) introduces a causality assumption into the GPCM, and the Rough Gaussian Process Convolution Model (RGPCM) can be interpreted as a Bayesian nonparametric generalisation of the fractional Ornstein-Uhlenbeck process. We also propose a more effective variational inference scheme, going beyond the mean-field assumption: we design a Gibbs sampler which directly samples from the optimal variational solution, circumventing any variational optimisation entirely. The proposed variations of the GPCM are validated in experiments on synthetic and real-world data, showing promising results.
APA
Bruinsma, W.P., Tegnér, M. & Turner, R.E.. (2022). Modelling Non-Smooth Signals with Complex Spectral Structure . Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 151:5166-5195 Available from https://proceedings.mlr.press/v151/bruinsma22a.html.

Related Material