Convergence of Langevin Monte Carlo in Chi-Squared and Rényi Divergence

Murat A. Erdogdu, Rasa Hosseinzadeh, Shunshi Zhang
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:8151-8175, 2022.

Abstract

We study sampling from a target distribution $\nu_* = e^{-f}$ using the unadjusted Langevin Monte Carlo (LMC) algorithm when the potential $f$ satisfies a strong dissipativity condition and it is first-order smooth with a Lipschitz gradient. We prove that, initialized with a Gaussian random vector that has sufficiently small variance, iterating the LMC algorithm for $\widetilde{\mathcal{O}}(\lambda^2 d\epsilon^{-1})$ steps is sufficient to reach $\epsilon$-neighborhood of the target in both Chi-squared and Rényi divergence, where $\lambda$ is the logarithmic Sobolev constant of $\nu_*$. Our results do not require warm-start to deal with the exponential dimension dependency in Chi-squared divergence at initialization. In particular, for strongly convex and first-order smooth potentials, we show that the LMC algorithm achieves the rate estimate $\widetilde{\mathcal{O}}(d\epsilon^{-1})$ which improves the previously known rates in both of these metrics, under the same assumptions. Translating this rate to other metrics, our results also recover the state-of-the-art rate estimates in KL divergence, total variation and $2$-Wasserstein distance in the same setup. Finally, as we rely on the logarithmic Sobolev inequality, our framework covers a range of non-convex potentials that are first-order smooth and exhibit strong convexity outside of a compact region.

Cite this Paper


BibTeX
@InProceedings{pmlr-v151-erdogdu22a, title = { Convergence of Langevin Monte Carlo in Chi-Squared and Rényi Divergence }, author = {Erdogdu, Murat A. and Hosseinzadeh, Rasa and Zhang, Shunshi}, booktitle = {Proceedings of The 25th International Conference on Artificial Intelligence and Statistics}, pages = {8151--8175}, year = {2022}, editor = {Camps-Valls, Gustau and Ruiz, Francisco J. R. and Valera, Isabel}, volume = {151}, series = {Proceedings of Machine Learning Research}, month = {28--30 Mar}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v151/erdogdu22a/erdogdu22a.pdf}, url = {https://proceedings.mlr.press/v151/erdogdu22a.html}, abstract = { We study sampling from a target distribution $\nu_* = e^{-f}$ using the unadjusted Langevin Monte Carlo (LMC) algorithm when the potential $f$ satisfies a strong dissipativity condition and it is first-order smooth with a Lipschitz gradient. We prove that, initialized with a Gaussian random vector that has sufficiently small variance, iterating the LMC algorithm for $\widetilde{\mathcal{O}}(\lambda^2 d\epsilon^{-1})$ steps is sufficient to reach $\epsilon$-neighborhood of the target in both Chi-squared and Rényi divergence, where $\lambda$ is the logarithmic Sobolev constant of $\nu_*$. Our results do not require warm-start to deal with the exponential dimension dependency in Chi-squared divergence at initialization. In particular, for strongly convex and first-order smooth potentials, we show that the LMC algorithm achieves the rate estimate $\widetilde{\mathcal{O}}(d\epsilon^{-1})$ which improves the previously known rates in both of these metrics, under the same assumptions. Translating this rate to other metrics, our results also recover the state-of-the-art rate estimates in KL divergence, total variation and $2$-Wasserstein distance in the same setup. Finally, as we rely on the logarithmic Sobolev inequality, our framework covers a range of non-convex potentials that are first-order smooth and exhibit strong convexity outside of a compact region. } }
Endnote
%0 Conference Paper %T Convergence of Langevin Monte Carlo in Chi-Squared and Rényi Divergence %A Murat A. Erdogdu %A Rasa Hosseinzadeh %A Shunshi Zhang %B Proceedings of The 25th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2022 %E Gustau Camps-Valls %E Francisco J. R. Ruiz %E Isabel Valera %F pmlr-v151-erdogdu22a %I PMLR %P 8151--8175 %U https://proceedings.mlr.press/v151/erdogdu22a.html %V 151 %X We study sampling from a target distribution $\nu_* = e^{-f}$ using the unadjusted Langevin Monte Carlo (LMC) algorithm when the potential $f$ satisfies a strong dissipativity condition and it is first-order smooth with a Lipschitz gradient. We prove that, initialized with a Gaussian random vector that has sufficiently small variance, iterating the LMC algorithm for $\widetilde{\mathcal{O}}(\lambda^2 d\epsilon^{-1})$ steps is sufficient to reach $\epsilon$-neighborhood of the target in both Chi-squared and Rényi divergence, where $\lambda$ is the logarithmic Sobolev constant of $\nu_*$. Our results do not require warm-start to deal with the exponential dimension dependency in Chi-squared divergence at initialization. In particular, for strongly convex and first-order smooth potentials, we show that the LMC algorithm achieves the rate estimate $\widetilde{\mathcal{O}}(d\epsilon^{-1})$ which improves the previously known rates in both of these metrics, under the same assumptions. Translating this rate to other metrics, our results also recover the state-of-the-art rate estimates in KL divergence, total variation and $2$-Wasserstein distance in the same setup. Finally, as we rely on the logarithmic Sobolev inequality, our framework covers a range of non-convex potentials that are first-order smooth and exhibit strong convexity outside of a compact region.
APA
Erdogdu, M.A., Hosseinzadeh, R. & Zhang, S.. (2022). Convergence of Langevin Monte Carlo in Chi-Squared and Rényi Divergence . Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 151:8151-8175 Available from https://proceedings.mlr.press/v151/erdogdu22a.html.

Related Material