SGD with low-dimensional gradients with applications to private and distributed learning

Shiva Prasad Kasiviswanathan
Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, PMLR 161:1905-1915, 2021.

Abstract

In this paper, we consider constrained optimization problems subject to a convex set C Stochastic gradient descent (SGD) is a simple and popular stochastic optimization algorithm that has been the workhorse of machine learning for many years. We show a new and surprising fact about SGD, in that depending on the constraint set C, one can operate SGD with much lower-dimensional stochastic gradients without affecting its performance. In particular, we design an optimization algorithm that operates with the lower-dimensional (compressed) stochastic gradients, and establish that with the right set of parameters it has the exact same dimension-free convergence guarantees as that of regular SGD for popular convex and nonconvex optimization settings. We also present two applications of these bounds, one for improving the empirical risk minimization bounds in differentially private nonconvex optimization, and other for reducing communication costs with distributed SGD. Additionally, we also show that this connection between constraint set structure and gradient compression also extends beyond SGD to the conditional gradient (Frank-Wolfe) method. The geometry of the constraint set, captured by its Gaussian width, plays an important role in all our results.

Cite this Paper


BibTeX
@InProceedings{pmlr-v161-kasiviswanathan21a, title = {SGD with low-dimensional gradients with applications to private and distributed learning}, author = {Kasiviswanathan, Shiva Prasad}, booktitle = {Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence}, pages = {1905--1915}, year = {2021}, editor = {de Campos, Cassio and Maathuis, Marloes H.}, volume = {161}, series = {Proceedings of Machine Learning Research}, month = {27--30 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v161/kasiviswanathan21a/kasiviswanathan21a.pdf}, url = {https://proceedings.mlr.press/v161/kasiviswanathan21a.html}, abstract = {In this paper, we consider constrained optimization problems subject to a convex set C Stochastic gradient descent (SGD) is a simple and popular stochastic optimization algorithm that has been the workhorse of machine learning for many years. We show a new and surprising fact about SGD, in that depending on the constraint set C, one can operate SGD with much lower-dimensional stochastic gradients without affecting its performance. In particular, we design an optimization algorithm that operates with the lower-dimensional (compressed) stochastic gradients, and establish that with the right set of parameters it has the exact same dimension-free convergence guarantees as that of regular SGD for popular convex and nonconvex optimization settings. We also present two applications of these bounds, one for improving the empirical risk minimization bounds in differentially private nonconvex optimization, and other for reducing communication costs with distributed SGD. Additionally, we also show that this connection between constraint set structure and gradient compression also extends beyond SGD to the conditional gradient (Frank-Wolfe) method. The geometry of the constraint set, captured by its Gaussian width, plays an important role in all our results.} }
Endnote
%0 Conference Paper %T SGD with low-dimensional gradients with applications to private and distributed learning %A Shiva Prasad Kasiviswanathan %B Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2021 %E Cassio de Campos %E Marloes H. Maathuis %F pmlr-v161-kasiviswanathan21a %I PMLR %P 1905--1915 %U https://proceedings.mlr.press/v161/kasiviswanathan21a.html %V 161 %X In this paper, we consider constrained optimization problems subject to a convex set C Stochastic gradient descent (SGD) is a simple and popular stochastic optimization algorithm that has been the workhorse of machine learning for many years. We show a new and surprising fact about SGD, in that depending on the constraint set C, one can operate SGD with much lower-dimensional stochastic gradients without affecting its performance. In particular, we design an optimization algorithm that operates with the lower-dimensional (compressed) stochastic gradients, and establish that with the right set of parameters it has the exact same dimension-free convergence guarantees as that of regular SGD for popular convex and nonconvex optimization settings. We also present two applications of these bounds, one for improving the empirical risk minimization bounds in differentially private nonconvex optimization, and other for reducing communication costs with distributed SGD. Additionally, we also show that this connection between constraint set structure and gradient compression also extends beyond SGD to the conditional gradient (Frank-Wolfe) method. The geometry of the constraint set, captured by its Gaussian width, plays an important role in all our results.
APA
Kasiviswanathan, S.P.. (2021). SGD with low-dimensional gradients with applications to private and distributed learning. Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 161:1905-1915 Available from https://proceedings.mlr.press/v161/kasiviswanathan21a.html.

Related Material