Simple combinatorial algorithms for combinatorial bandits: corruptions and approximations

Haike Xu, Jian Li
Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, PMLR 161:1444-1454, 2021.

Abstract

We consider the stochastic combinatorial semi-bandit problem with adversarial corruptions. We provide a simple combinatorial algorithm that can achieve a regret of $\tilde{O}\left(C+d^2K/\Delta_{min}\right)$ where $C$ is the total amount of corruptions, $d$ is the maximal number of arms one can play in each round, $K$ is the number of arms. If one selects only one arm in each round, we achieves a regret of $\tilde{O}\left(C+\sum_{\Delta_i>0}(1/\Delta_i)\right)$. Our algorithm is combinatorial and improves on the previous combinatorial algorithm by [Gupta et al., COLT2019] (their bound is $\tilde{O}\left(KC+\sum_{\Delta_i>0}(1/\Delta_i)\right)$), and almost matches the best known bounds obtained by [Zimmert et al., ICML2019] and [Zimmert and Seldin, AISTATS2019] (up to logarithmic factor). Note that the algorithms in [Zimmert et al., ICML2019] and [Zimmert and Seldin, AISTATS2019] require one to solve complex convex programs while our algorithm is combinatorial, very easy to implement, requires weaker assumptions and has very low oracle complexity and running time. We also study the setting where we only get access to an approximation oracle for the stochastic combinatorial semi-bandit problem. Our algorithm achieves an (approximation) regret bound of $\tilde{O}\left(d\sqrt{KT}\right)$. Our algorithm is very simple, only worse than the best known regret bound by $\sqrt{d}$, and has much lower oracle complexity than previous work.

Cite this Paper


BibTeX
@InProceedings{pmlr-v161-xu21b, title = {Simple combinatorial algorithms for combinatorial bandits: corruptions and approximations}, author = {Xu, Haike and Li, Jian}, booktitle = {Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence}, pages = {1444--1454}, year = {2021}, editor = {de Campos, Cassio and Maathuis, Marloes H.}, volume = {161}, series = {Proceedings of Machine Learning Research}, month = {27--30 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v161/xu21b/xu21b.pdf}, url = {https://proceedings.mlr.press/v161/xu21b.html}, abstract = {We consider the stochastic combinatorial semi-bandit problem with adversarial corruptions. We provide a simple combinatorial algorithm that can achieve a regret of $\tilde{O}\left(C+d^2K/\Delta_{min}\right)$ where $C$ is the total amount of corruptions, $d$ is the maximal number of arms one can play in each round, $K$ is the number of arms. If one selects only one arm in each round, we achieves a regret of $\tilde{O}\left(C+\sum_{\Delta_i>0}(1/\Delta_i)\right)$. Our algorithm is combinatorial and improves on the previous combinatorial algorithm by [Gupta et al., COLT2019] (their bound is $\tilde{O}\left(KC+\sum_{\Delta_i>0}(1/\Delta_i)\right)$), and almost matches the best known bounds obtained by [Zimmert et al., ICML2019] and [Zimmert and Seldin, AISTATS2019] (up to logarithmic factor). Note that the algorithms in [Zimmert et al., ICML2019] and [Zimmert and Seldin, AISTATS2019] require one to solve complex convex programs while our algorithm is combinatorial, very easy to implement, requires weaker assumptions and has very low oracle complexity and running time. We also study the setting where we only get access to an approximation oracle for the stochastic combinatorial semi-bandit problem. Our algorithm achieves an (approximation) regret bound of $\tilde{O}\left(d\sqrt{KT}\right)$. Our algorithm is very simple, only worse than the best known regret bound by $\sqrt{d}$, and has much lower oracle complexity than previous work.} }
Endnote
%0 Conference Paper %T Simple combinatorial algorithms for combinatorial bandits: corruptions and approximations %A Haike Xu %A Jian Li %B Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2021 %E Cassio de Campos %E Marloes H. Maathuis %F pmlr-v161-xu21b %I PMLR %P 1444--1454 %U https://proceedings.mlr.press/v161/xu21b.html %V 161 %X We consider the stochastic combinatorial semi-bandit problem with adversarial corruptions. We provide a simple combinatorial algorithm that can achieve a regret of $\tilde{O}\left(C+d^2K/\Delta_{min}\right)$ where $C$ is the total amount of corruptions, $d$ is the maximal number of arms one can play in each round, $K$ is the number of arms. If one selects only one arm in each round, we achieves a regret of $\tilde{O}\left(C+\sum_{\Delta_i>0}(1/\Delta_i)\right)$. Our algorithm is combinatorial and improves on the previous combinatorial algorithm by [Gupta et al., COLT2019] (their bound is $\tilde{O}\left(KC+\sum_{\Delta_i>0}(1/\Delta_i)\right)$), and almost matches the best known bounds obtained by [Zimmert et al., ICML2019] and [Zimmert and Seldin, AISTATS2019] (up to logarithmic factor). Note that the algorithms in [Zimmert et al., ICML2019] and [Zimmert and Seldin, AISTATS2019] require one to solve complex convex programs while our algorithm is combinatorial, very easy to implement, requires weaker assumptions and has very low oracle complexity and running time. We also study the setting where we only get access to an approximation oracle for the stochastic combinatorial semi-bandit problem. Our algorithm achieves an (approximation) regret bound of $\tilde{O}\left(d\sqrt{KT}\right)$. Our algorithm is very simple, only worse than the best known regret bound by $\sqrt{d}$, and has much lower oracle complexity than previous work.
APA
Xu, H. & Li, J.. (2021). Simple combinatorial algorithms for combinatorial bandits: corruptions and approximations. Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 161:1444-1454 Available from https://proceedings.mlr.press/v161/xu21b.html.

Related Material