Understanding Dataset Difficulty with $\mathcal{V}$-Usable Information

Kawin Ethayarajh, Yejin Choi, Swabha Swayamdipta
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:5988-6008, 2022.

Abstract

Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to humans; the bigger the performance gap, the harder the dataset is said to be. However, this comparison provides little understanding of how difficult each instance in a given distribution is, or what attributes make the dataset difficult for a given model. To address these questions, we frame dataset difficulty—w.r.t. a model $\mathcal{V}$—as the lack of $\mathcal{V}$-usable information (Xu et al., 2019), where a lower value indicates a more difficult dataset for $\mathcal{V}$. We further introduce pointwise $\mathcal{V}$-information (PVI) for measuring the difficulty of individual instances w.r.t. a given distribution. While standard evaluation metrics typically only compare different models for the same dataset, $\mathcal{V}$-usable information and PVI also permit the converse: for a given model $\mathcal{V}$, we can compare different datasets, as well as different instances/slices of the same dataset. Furthermore, our framework allows for the interpretability of different input attributes via transformations of the input, which we use to discover annotation artefacts in widely-used NLP benchmarks.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-ethayarajh22a, title = {Understanding Dataset Difficulty with $\mathcal{V}$-Usable Information}, author = {Ethayarajh, Kawin and Choi, Yejin and Swayamdipta, Swabha}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {5988--6008}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/ethayarajh22a/ethayarajh22a.pdf}, url = {https://proceedings.mlr.press/v162/ethayarajh22a.html}, abstract = {Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to humans; the bigger the performance gap, the harder the dataset is said to be. However, this comparison provides little understanding of how difficult each instance in a given distribution is, or what attributes make the dataset difficult for a given model. To address these questions, we frame dataset difficulty—w.r.t. a model $\mathcal{V}$—as the lack of $\mathcal{V}$-usable information (Xu et al., 2019), where a lower value indicates a more difficult dataset for $\mathcal{V}$. We further introduce pointwise $\mathcal{V}$-information (PVI) for measuring the difficulty of individual instances w.r.t. a given distribution. While standard evaluation metrics typically only compare different models for the same dataset, $\mathcal{V}$-usable information and PVI also permit the converse: for a given model $\mathcal{V}$, we can compare different datasets, as well as different instances/slices of the same dataset. Furthermore, our framework allows for the interpretability of different input attributes via transformations of the input, which we use to discover annotation artefacts in widely-used NLP benchmarks.} }
Endnote
%0 Conference Paper %T Understanding Dataset Difficulty with $\mathcal{V}$-Usable Information %A Kawin Ethayarajh %A Yejin Choi %A Swabha Swayamdipta %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-ethayarajh22a %I PMLR %P 5988--6008 %U https://proceedings.mlr.press/v162/ethayarajh22a.html %V 162 %X Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to humans; the bigger the performance gap, the harder the dataset is said to be. However, this comparison provides little understanding of how difficult each instance in a given distribution is, or what attributes make the dataset difficult for a given model. To address these questions, we frame dataset difficulty—w.r.t. a model $\mathcal{V}$—as the lack of $\mathcal{V}$-usable information (Xu et al., 2019), where a lower value indicates a more difficult dataset for $\mathcal{V}$. We further introduce pointwise $\mathcal{V}$-information (PVI) for measuring the difficulty of individual instances w.r.t. a given distribution. While standard evaluation metrics typically only compare different models for the same dataset, $\mathcal{V}$-usable information and PVI also permit the converse: for a given model $\mathcal{V}$, we can compare different datasets, as well as different instances/slices of the same dataset. Furthermore, our framework allows for the interpretability of different input attributes via transformations of the input, which we use to discover annotation artefacts in widely-used NLP benchmarks.
APA
Ethayarajh, K., Choi, Y. & Swayamdipta, S.. (2022). Understanding Dataset Difficulty with $\mathcal{V}$-Usable Information. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:5988-6008 Available from https://proceedings.mlr.press/v162/ethayarajh22a.html.

Related Material