Achieving Fairness at No Utility Cost via Data Reweighing with Influence

Peizhao Li, Hongfu Liu
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:12917-12930, 2022.

Abstract

With the fast development of algorithmic governance, fairness has become a compulsory property for machine learning models to suppress unintentional discrimination. In this paper, we focus on the pre-processing aspect for achieving fairness, and propose a data reweighing approach that only adjusts the weight for samples in the training phase. Different from most previous reweighing methods which usually assign a uniform weight for each (sub)group, we granularly model the influence of each training sample with regard to fairness-related quantity and predictive utility, and compute individual weights based on influence under the constraints from both fairness and utility. Experimental results reveal that previous methods achieve fairness at a non-negligible cost of utility, while as a significant advantage, our approach can empirically release the tradeoff and obtain cost-free fairness for equal opportunity. We demonstrate the cost-free fairness through vanilla classifiers and standard training processes, compared to baseline methods on multiple real-world tabular datasets. Code available at https://github.com/brandeis-machine-learning/influence-fairness.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-li22p, title = {Achieving Fairness at No Utility Cost via Data Reweighing with Influence}, author = {Li, Peizhao and Liu, Hongfu}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {12917--12930}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/li22p/li22p.pdf}, url = {https://proceedings.mlr.press/v162/li22p.html}, abstract = {With the fast development of algorithmic governance, fairness has become a compulsory property for machine learning models to suppress unintentional discrimination. In this paper, we focus on the pre-processing aspect for achieving fairness, and propose a data reweighing approach that only adjusts the weight for samples in the training phase. Different from most previous reweighing methods which usually assign a uniform weight for each (sub)group, we granularly model the influence of each training sample with regard to fairness-related quantity and predictive utility, and compute individual weights based on influence under the constraints from both fairness and utility. Experimental results reveal that previous methods achieve fairness at a non-negligible cost of utility, while as a significant advantage, our approach can empirically release the tradeoff and obtain cost-free fairness for equal opportunity. We demonstrate the cost-free fairness through vanilla classifiers and standard training processes, compared to baseline methods on multiple real-world tabular datasets. Code available at https://github.com/brandeis-machine-learning/influence-fairness.} }
Endnote
%0 Conference Paper %T Achieving Fairness at No Utility Cost via Data Reweighing with Influence %A Peizhao Li %A Hongfu Liu %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-li22p %I PMLR %P 12917--12930 %U https://proceedings.mlr.press/v162/li22p.html %V 162 %X With the fast development of algorithmic governance, fairness has become a compulsory property for machine learning models to suppress unintentional discrimination. In this paper, we focus on the pre-processing aspect for achieving fairness, and propose a data reweighing approach that only adjusts the weight for samples in the training phase. Different from most previous reweighing methods which usually assign a uniform weight for each (sub)group, we granularly model the influence of each training sample with regard to fairness-related quantity and predictive utility, and compute individual weights based on influence under the constraints from both fairness and utility. Experimental results reveal that previous methods achieve fairness at a non-negligible cost of utility, while as a significant advantage, our approach can empirically release the tradeoff and obtain cost-free fairness for equal opportunity. We demonstrate the cost-free fairness through vanilla classifiers and standard training processes, compared to baseline methods on multiple real-world tabular datasets. Code available at https://github.com/brandeis-machine-learning/influence-fairness.
APA
Li, P. & Liu, H.. (2022). Achieving Fairness at No Utility Cost via Data Reweighing with Influence. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:12917-12930 Available from https://proceedings.mlr.press/v162/li22p.html.

Related Material