Memory-Based Model Editing at Scale

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, Chelsea Finn
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:15817-15831, 2022.

Abstract

Even the largest neural networks make errors, and once-correct predictions can become invalid as the world changes. Model editors make local updates to the behavior of base (pre-trained) models to inject updated knowledge or correct undesirable behaviors. Existing model editors have shown promise, but also suffer from insufficient expressiveness: they struggle to accurately model an edit’s intended scope (examples affected by the edit), leading to inaccurate predictions for test inputs loosely related to the edit, and they often fail altogether after many edits. As a higher-capacity alternative, we propose Semi-Parametric Editing with a Retrieval-Augmented Counterfactual Model (SERAC), which stores edits in an explicit memory and learns to reason over them to modulate the base model’s predictions as needed. To enable more rigorous evaluation of model editors, we introduce three challenging language model editing problems based on question answering, fact-checking, and dialogue generation. We find that only SERAC achieves high performance on all three problems, consistently outperforming existing approaches to model editing by a significant margin. Code, data, and additional project information will be made available at https://sites.google.com/view/serac-editing.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-mitchell22a, title = {Memory-Based Model Editing at Scale}, author = {Mitchell, Eric and Lin, Charles and Bosselut, Antoine and Manning, Christopher D and Finn, Chelsea}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {15817--15831}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/mitchell22a/mitchell22a.pdf}, url = {https://proceedings.mlr.press/v162/mitchell22a.html}, abstract = {Even the largest neural networks make errors, and once-correct predictions can become invalid as the world changes. Model editors make local updates to the behavior of base (pre-trained) models to inject updated knowledge or correct undesirable behaviors. Existing model editors have shown promise, but also suffer from insufficient expressiveness: they struggle to accurately model an edit’s intended scope (examples affected by the edit), leading to inaccurate predictions for test inputs loosely related to the edit, and they often fail altogether after many edits. As a higher-capacity alternative, we propose Semi-Parametric Editing with a Retrieval-Augmented Counterfactual Model (SERAC), which stores edits in an explicit memory and learns to reason over them to modulate the base model’s predictions as needed. To enable more rigorous evaluation of model editors, we introduce three challenging language model editing problems based on question answering, fact-checking, and dialogue generation. We find that only SERAC achieves high performance on all three problems, consistently outperforming existing approaches to model editing by a significant margin. Code, data, and additional project information will be made available at https://sites.google.com/view/serac-editing.} }
Endnote
%0 Conference Paper %T Memory-Based Model Editing at Scale %A Eric Mitchell %A Charles Lin %A Antoine Bosselut %A Christopher D Manning %A Chelsea Finn %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-mitchell22a %I PMLR %P 15817--15831 %U https://proceedings.mlr.press/v162/mitchell22a.html %V 162 %X Even the largest neural networks make errors, and once-correct predictions can become invalid as the world changes. Model editors make local updates to the behavior of base (pre-trained) models to inject updated knowledge or correct undesirable behaviors. Existing model editors have shown promise, but also suffer from insufficient expressiveness: they struggle to accurately model an edit’s intended scope (examples affected by the edit), leading to inaccurate predictions for test inputs loosely related to the edit, and they often fail altogether after many edits. As a higher-capacity alternative, we propose Semi-Parametric Editing with a Retrieval-Augmented Counterfactual Model (SERAC), which stores edits in an explicit memory and learns to reason over them to modulate the base model’s predictions as needed. To enable more rigorous evaluation of model editors, we introduce three challenging language model editing problems based on question answering, fact-checking, and dialogue generation. We find that only SERAC achieves high performance on all three problems, consistently outperforming existing approaches to model editing by a significant margin. Code, data, and additional project information will be made available at https://sites.google.com/view/serac-editing.
APA
Mitchell, E., Lin, C., Bosselut, A., Manning, C.D. & Finn, C.. (2022). Memory-Based Model Editing at Scale. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:15817-15831 Available from https://proceedings.mlr.press/v162/mitchell22a.html.

Related Material