Stable Conformal Prediction Sets

Eugene Ndiaye
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:16462-16479, 2022.

Abstract

When one observes a sequence of variables $(x_1, y_1), \ldots, (x_n, y_n)$, Conformal Prediction (CP) is a methodology that allows to estimate a confidence set for $y_{n+1}$ given $x_{n+1}$ by merely assuming that the distribution of the data is exchangeable. CP sets have guaranteed coverage for any finite population size $n$. While appealing, the computation of such a set turns out to be infeasible in general, \eg when the unknown variable $y_{n+1}$ is continuous. The bottleneck is that it is based on a procedure that readjusts a prediction model on data where we replace the unknown target by all its possible values in order to select the most probable one. This requires computing an infinite number of models, which often makes it intractable. In this paper, we combine CP techniques with classical algorithmic stability bounds to derive a prediction set computable with a single model fit. We demonstrate that our proposed confidence set does not lose any coverage guarantees while avoiding the need for data splitting as currently done in the literature. We provide some numerical experiments to illustrate the tightness of our estimation when the sample size is sufficiently large, on both synthetic and real datasets.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-ndiaye22a, title = {Stable Conformal Prediction Sets}, author = {Ndiaye, Eugene}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {16462--16479}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/ndiaye22a/ndiaye22a.pdf}, url = {https://proceedings.mlr.press/v162/ndiaye22a.html}, abstract = {When one observes a sequence of variables $(x_1, y_1), \ldots, (x_n, y_n)$, Conformal Prediction (CP) is a methodology that allows to estimate a confidence set for $y_{n+1}$ given $x_{n+1}$ by merely assuming that the distribution of the data is exchangeable. CP sets have guaranteed coverage for any finite population size $n$. While appealing, the computation of such a set turns out to be infeasible in general, \eg when the unknown variable $y_{n+1}$ is continuous. The bottleneck is that it is based on a procedure that readjusts a prediction model on data where we replace the unknown target by all its possible values in order to select the most probable one. This requires computing an infinite number of models, which often makes it intractable. In this paper, we combine CP techniques with classical algorithmic stability bounds to derive a prediction set computable with a single model fit. We demonstrate that our proposed confidence set does not lose any coverage guarantees while avoiding the need for data splitting as currently done in the literature. We provide some numerical experiments to illustrate the tightness of our estimation when the sample size is sufficiently large, on both synthetic and real datasets.} }
Endnote
%0 Conference Paper %T Stable Conformal Prediction Sets %A Eugene Ndiaye %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-ndiaye22a %I PMLR %P 16462--16479 %U https://proceedings.mlr.press/v162/ndiaye22a.html %V 162 %X When one observes a sequence of variables $(x_1, y_1), \ldots, (x_n, y_n)$, Conformal Prediction (CP) is a methodology that allows to estimate a confidence set for $y_{n+1}$ given $x_{n+1}$ by merely assuming that the distribution of the data is exchangeable. CP sets have guaranteed coverage for any finite population size $n$. While appealing, the computation of such a set turns out to be infeasible in general, \eg when the unknown variable $y_{n+1}$ is continuous. The bottleneck is that it is based on a procedure that readjusts a prediction model on data where we replace the unknown target by all its possible values in order to select the most probable one. This requires computing an infinite number of models, which often makes it intractable. In this paper, we combine CP techniques with classical algorithmic stability bounds to derive a prediction set computable with a single model fit. We demonstrate that our proposed confidence set does not lose any coverage guarantees while avoiding the need for data splitting as currently done in the literature. We provide some numerical experiments to illustrate the tightness of our estimation when the sample size is sufficiently large, on both synthetic and real datasets.
APA
Ndiaye, E.. (2022). Stable Conformal Prediction Sets. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:16462-16479 Available from https://proceedings.mlr.press/v162/ndiaye22a.html.

Related Material