Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs

Meyer Scetbon, Gabriel Peyré, Marco Cuturi
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:19347-19365, 2022.

Abstract

The ability to align points across two related yet incomparable point clouds (e.g. living in different spaces) plays an important role in machine learning. The Gromov-Wasserstein (GW) framework provides an increasingly popular answer to such problems, by seeking a low-distortion, geometry-preserving assignment between these points. As a non-convex, quadratic generalization of optimal transport (OT), GW is NP-hard. While practitioners often resort to solving GW approximately as a nested sequence of entropy-regularized OT problems, the cubic complexity (in the number $n$ of samples) of that approach is a roadblock. We show in this work how a recent variant of the OT problem that restricts the set of admissible couplings to those having a low-rank factorization is remarkably well suited to the resolution of GW: when applied to GW, we show that this approach is not only able to compute a stationary point of the GW problem in time $O(n^2)$, but also uniquely positioned to benefit from the knowledge that the initial cost matrices are low-rank, to yield a linear time $O(n)$ GW approximation. Our approach yields similar results, yet orders of magnitude faster computation than the SoTA entropic GW approaches, on both simulated and real data.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-scetbon22b, title = {Linear-Time Gromov {W}asserstein Distances using Low Rank Couplings and Costs}, author = {Scetbon, Meyer and Peyr{\'e}, Gabriel and Cuturi, Marco}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {19347--19365}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/scetbon22b/scetbon22b.pdf}, url = {https://proceedings.mlr.press/v162/scetbon22b.html}, abstract = {The ability to align points across two related yet incomparable point clouds (e.g. living in different spaces) plays an important role in machine learning. The Gromov-Wasserstein (GW) framework provides an increasingly popular answer to such problems, by seeking a low-distortion, geometry-preserving assignment between these points. As a non-convex, quadratic generalization of optimal transport (OT), GW is NP-hard. While practitioners often resort to solving GW approximately as a nested sequence of entropy-regularized OT problems, the cubic complexity (in the number $n$ of samples) of that approach is a roadblock. We show in this work how a recent variant of the OT problem that restricts the set of admissible couplings to those having a low-rank factorization is remarkably well suited to the resolution of GW: when applied to GW, we show that this approach is not only able to compute a stationary point of the GW problem in time $O(n^2)$, but also uniquely positioned to benefit from the knowledge that the initial cost matrices are low-rank, to yield a linear time $O(n)$ GW approximation. Our approach yields similar results, yet orders of magnitude faster computation than the SoTA entropic GW approaches, on both simulated and real data.} }
Endnote
%0 Conference Paper %T Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs %A Meyer Scetbon %A Gabriel Peyré %A Marco Cuturi %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-scetbon22b %I PMLR %P 19347--19365 %U https://proceedings.mlr.press/v162/scetbon22b.html %V 162 %X The ability to align points across two related yet incomparable point clouds (e.g. living in different spaces) plays an important role in machine learning. The Gromov-Wasserstein (GW) framework provides an increasingly popular answer to such problems, by seeking a low-distortion, geometry-preserving assignment between these points. As a non-convex, quadratic generalization of optimal transport (OT), GW is NP-hard. While practitioners often resort to solving GW approximately as a nested sequence of entropy-regularized OT problems, the cubic complexity (in the number $n$ of samples) of that approach is a roadblock. We show in this work how a recent variant of the OT problem that restricts the set of admissible couplings to those having a low-rank factorization is remarkably well suited to the resolution of GW: when applied to GW, we show that this approach is not only able to compute a stationary point of the GW problem in time $O(n^2)$, but also uniquely positioned to benefit from the knowledge that the initial cost matrices are low-rank, to yield a linear time $O(n)$ GW approximation. Our approach yields similar results, yet orders of magnitude faster computation than the SoTA entropic GW approaches, on both simulated and real data.
APA
Scetbon, M., Peyré, G. & Cuturi, M.. (2022). Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:19347-19365 Available from https://proceedings.mlr.press/v162/scetbon22b.html.

Related Material