Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning

Yunhao Tang
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:21050-21075, 2022.

Abstract

Despite the empirical success of meta reinforcement learning (meta-RL), there are still a number poorly-understood discrepancies between theory and practice. Critically, biased gradient estimates are almost always implemented in practice, whereas prior theory on meta-RL only establishes convergence under unbiased gradient estimates. In this work, we investigate such a discrepancy. In particular, (1) We show that unbiased gradient estimates have variance $\Theta(N)$ which linearly depends on the sample size $N$ of the inner loop updates; (2) We propose linearized score function (LSF) gradient estimates, which have bias $\mathcal{O}(1/\sqrt{N})$ and variance $\mathcal{O}(1/N)$; (3) We show that most empirical prior work in fact implements variants of the LSF gradient estimates. This implies that practical algorithms "accidentally" introduce bias to achieve better performance; (4) We establish theoretical guarantees for the LSF gradient estimates in meta-RL regarding its convergence to stationary points, showing better dependency on $N$ than prior work when $N$ is large.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-tang22a, title = {Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning}, author = {Tang, Yunhao}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {21050--21075}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/tang22a/tang22a.pdf}, url = {https://proceedings.mlr.press/v162/tang22a.html}, abstract = {Despite the empirical success of meta reinforcement learning (meta-RL), there are still a number poorly-understood discrepancies between theory and practice. Critically, biased gradient estimates are almost always implemented in practice, whereas prior theory on meta-RL only establishes convergence under unbiased gradient estimates. In this work, we investigate such a discrepancy. In particular, (1) We show that unbiased gradient estimates have variance $\Theta(N)$ which linearly depends on the sample size $N$ of the inner loop updates; (2) We propose linearized score function (LSF) gradient estimates, which have bias $\mathcal{O}(1/\sqrt{N})$ and variance $\mathcal{O}(1/N)$; (3) We show that most empirical prior work in fact implements variants of the LSF gradient estimates. This implies that practical algorithms "accidentally" introduce bias to achieve better performance; (4) We establish theoretical guarantees for the LSF gradient estimates in meta-RL regarding its convergence to stationary points, showing better dependency on $N$ than prior work when $N$ is large.} }
Endnote
%0 Conference Paper %T Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning %A Yunhao Tang %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-tang22a %I PMLR %P 21050--21075 %U https://proceedings.mlr.press/v162/tang22a.html %V 162 %X Despite the empirical success of meta reinforcement learning (meta-RL), there are still a number poorly-understood discrepancies between theory and practice. Critically, biased gradient estimates are almost always implemented in practice, whereas prior theory on meta-RL only establishes convergence under unbiased gradient estimates. In this work, we investigate such a discrepancy. In particular, (1) We show that unbiased gradient estimates have variance $\Theta(N)$ which linearly depends on the sample size $N$ of the inner loop updates; (2) We propose linearized score function (LSF) gradient estimates, which have bias $\mathcal{O}(1/\sqrt{N})$ and variance $\mathcal{O}(1/N)$; (3) We show that most empirical prior work in fact implements variants of the LSF gradient estimates. This implies that practical algorithms "accidentally" introduce bias to achieve better performance; (4) We establish theoretical guarantees for the LSF gradient estimates in meta-RL regarding its convergence to stationary points, showing better dependency on $N$ than prior work when $N$ is large.
APA
Tang, Y.. (2022). Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:21050-21075 Available from https://proceedings.mlr.press/v162/tang22a.html.

Related Material