[edit]
Inferring Cause and Effect in the Presence of Heteroscedastic Noise
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:24615-24630, 2022.
Abstract
We study the problem of identifying cause and effect over two univariate continuous variables $X$ and $Y$ from a sample of their joint distribution. Our focus lies on the setting when the variance of the noise may be dependent on the cause. We propose to partition the domain of the cause into multiple segments where the noise indeed is dependent. To this end, we minimize a scale-invariant, penalized regression score, finding the optimal partitioning using dynamic programming. We show under which conditions this allows us to identify the causal direction for the linear setting with heteroscedastic noise, for the non-linear setting with homoscedastic noise, as well as empirically confirm that these results generalize to the non-linear and heteroscedastic case. Altogether, the ability to model heteroscedasticity translates into an improved performance in telling cause from effect on a wide range of synthetic and real-world datasets.