Does the Data Induce Capacity Control in Deep Learning?

Rubing Yang, Jialin Mao, Pratik Chaudhari
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:25166-25197, 2022.

Abstract

We show that the input correlation matrix of typical classification datasets has an eigenspectrum where, after a sharp initial drop, a large number of small eigenvalues are distributed uniformly over an exponentially large range. This structure is mirrored in a network trained on this data: we show that the Hessian and the Fisher Information Matrix (FIM) have eigenvalues that are spread uniformly over exponentially large ranges. We call such eigenspectra “sloppy” because sets of weights corresponding to small eigenvalues can be changed by large magnitudes without affecting the loss. Networks trained on atypical datasets with non-sloppy inputs do not share these traits and deep networks trained on such datasets generalize poorly. Inspired by this, we study the hypothesis that sloppiness of inputs aids generalization in deep networks. We show that if the Hessian is sloppy, we can compute non-vacuous PAC-Bayes generalization bounds analytically. By exploiting our empirical observation that training predominantly takes place in the non-sloppy subspace of the FIM, we develop data-distribution dependent PAC-Bayes priors that lead to accurate generalization bounds using numerical optimization.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-yang22k, title = {Does the Data Induce Capacity Control in Deep Learning?}, author = {Yang, Rubing and Mao, Jialin and Chaudhari, Pratik}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {25166--25197}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/yang22k/yang22k.pdf}, url = {https://proceedings.mlr.press/v162/yang22k.html}, abstract = {We show that the input correlation matrix of typical classification datasets has an eigenspectrum where, after a sharp initial drop, a large number of small eigenvalues are distributed uniformly over an exponentially large range. This structure is mirrored in a network trained on this data: we show that the Hessian and the Fisher Information Matrix (FIM) have eigenvalues that are spread uniformly over exponentially large ranges. We call such eigenspectra “sloppy” because sets of weights corresponding to small eigenvalues can be changed by large magnitudes without affecting the loss. Networks trained on atypical datasets with non-sloppy inputs do not share these traits and deep networks trained on such datasets generalize poorly. Inspired by this, we study the hypothesis that sloppiness of inputs aids generalization in deep networks. We show that if the Hessian is sloppy, we can compute non-vacuous PAC-Bayes generalization bounds analytically. By exploiting our empirical observation that training predominantly takes place in the non-sloppy subspace of the FIM, we develop data-distribution dependent PAC-Bayes priors that lead to accurate generalization bounds using numerical optimization.} }
Endnote
%0 Conference Paper %T Does the Data Induce Capacity Control in Deep Learning? %A Rubing Yang %A Jialin Mao %A Pratik Chaudhari %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-yang22k %I PMLR %P 25166--25197 %U https://proceedings.mlr.press/v162/yang22k.html %V 162 %X We show that the input correlation matrix of typical classification datasets has an eigenspectrum where, after a sharp initial drop, a large number of small eigenvalues are distributed uniformly over an exponentially large range. This structure is mirrored in a network trained on this data: we show that the Hessian and the Fisher Information Matrix (FIM) have eigenvalues that are spread uniformly over exponentially large ranges. We call such eigenspectra “sloppy” because sets of weights corresponding to small eigenvalues can be changed by large magnitudes without affecting the loss. Networks trained on atypical datasets with non-sloppy inputs do not share these traits and deep networks trained on such datasets generalize poorly. Inspired by this, we study the hypothesis that sloppiness of inputs aids generalization in deep networks. We show that if the Hessian is sloppy, we can compute non-vacuous PAC-Bayes generalization bounds analytically. By exploiting our empirical observation that training predominantly takes place in the non-sloppy subspace of the FIM, we develop data-distribution dependent PAC-Bayes priors that lead to accurate generalization bounds using numerical optimization.
APA
Yang, R., Mao, J. & Chaudhari, P.. (2022). Does the Data Induce Capacity Control in Deep Learning?. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:25166-25197 Available from https://proceedings.mlr.press/v162/yang22k.html.

Related Material