Auditing Robot Learning for Safety and Compliance during Deployment

Homanga Bharadhwaj
Proceedings of the 5th Conference on Robot Learning, PMLR 164:1801-1806, 2022.

Abstract

Robots of the future are going to exhibit increasingly human-like and super-human intelligence in a myriad of different tasks. They are also likely going to fail and be incompliant with human preferences in increasingly subtle ways. Towards the goal of achieving autonomous robots, the robot learning community has made rapid strides in applying machine learning techniques to train robots through data and interaction. This makes the study of how best to audit these algorithms for checking their compatibility with humans, pertinent and urgent. In this paper, we draw inspiration from the AI Safety and Alignment communities and make the case that we need to urgently consider ways in which we can best audit our robot learning algorithms to check for failure modes, and ensure that when operating autonomously, they are indeed behaving in ways that the human algorithm designers intend them to. We believe that this is a challenging problem that will require efforts from the entire robot learning community, and do not attempt to provide a concrete framework for auditing. Instead, we outline high-level guidance and a possible approach towards formulating this framework which we hope will serve as a useful starting point for thinking about auditing in the context of robot learning.

Cite this Paper


BibTeX
@InProceedings{pmlr-v164-bharadhwaj22a, title = {Auditing Robot Learning for Safety and Compliance during Deployment}, author = {Bharadhwaj, Homanga}, booktitle = {Proceedings of the 5th Conference on Robot Learning}, pages = {1801--1806}, year = {2022}, editor = {Faust, Aleksandra and Hsu, David and Neumann, Gerhard}, volume = {164}, series = {Proceedings of Machine Learning Research}, month = {08--11 Nov}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v164/bharadhwaj22a/bharadhwaj22a.pdf}, url = {https://proceedings.mlr.press/v164/bharadhwaj22a.html}, abstract = {Robots of the future are going to exhibit increasingly human-like and super-human intelligence in a myriad of different tasks. They are also likely going to fail and be incompliant with human preferences in increasingly subtle ways. Towards the goal of achieving autonomous robots, the robot learning community has made rapid strides in applying machine learning techniques to train robots through data and interaction. This makes the study of how best to audit these algorithms for checking their compatibility with humans, pertinent and urgent. In this paper, we draw inspiration from the AI Safety and Alignment communities and make the case that we need to urgently consider ways in which we can best audit our robot learning algorithms to check for failure modes, and ensure that when operating autonomously, they are indeed behaving in ways that the human algorithm designers intend them to. We believe that this is a challenging problem that will require efforts from the entire robot learning community, and do not attempt to provide a concrete framework for auditing. Instead, we outline high-level guidance and a possible approach towards formulating this framework which we hope will serve as a useful starting point for thinking about auditing in the context of robot learning.} }
Endnote
%0 Conference Paper %T Auditing Robot Learning for Safety and Compliance during Deployment %A Homanga Bharadhwaj %B Proceedings of the 5th Conference on Robot Learning %C Proceedings of Machine Learning Research %D 2022 %E Aleksandra Faust %E David Hsu %E Gerhard Neumann %F pmlr-v164-bharadhwaj22a %I PMLR %P 1801--1806 %U https://proceedings.mlr.press/v164/bharadhwaj22a.html %V 164 %X Robots of the future are going to exhibit increasingly human-like and super-human intelligence in a myriad of different tasks. They are also likely going to fail and be incompliant with human preferences in increasingly subtle ways. Towards the goal of achieving autonomous robots, the robot learning community has made rapid strides in applying machine learning techniques to train robots through data and interaction. This makes the study of how best to audit these algorithms for checking their compatibility with humans, pertinent and urgent. In this paper, we draw inspiration from the AI Safety and Alignment communities and make the case that we need to urgently consider ways in which we can best audit our robot learning algorithms to check for failure modes, and ensure that when operating autonomously, they are indeed behaving in ways that the human algorithm designers intend them to. We believe that this is a challenging problem that will require efforts from the entire robot learning community, and do not attempt to provide a concrete framework for auditing. Instead, we outline high-level guidance and a possible approach towards formulating this framework which we hope will serve as a useful starting point for thinking about auditing in the context of robot learning.
APA
Bharadhwaj, H.. (2022). Auditing Robot Learning for Safety and Compliance during Deployment. Proceedings of the 5th Conference on Robot Learning, in Proceedings of Machine Learning Research 164:1801-1806 Available from https://proceedings.mlr.press/v164/bharadhwaj22a.html.

Related Material