Global Riemannian Acceleration in Hyperbolic and Spherical Spaces

David Martínez-Rubio
Proceedings of The 33rd International Conference on Algorithmic Learning Theory, PMLR 167:768-826, 2022.

Abstract

We further research on the accelerated optimization phenomenon on Riemannian manifolds by introducing accelerated global first-order methods for the optimization of $L$-smooth and geodesically convex (g-convex) or $\mu$-strongly g-convex functions defined on the hyperbolic space or a subset of the sphere. For a manifold other than the Euclidean space, these are the first methods to \emph{globally} achieve the same rates as accelerated gradient descent in the Euclidean space with respect to $L$ and $\epsilon$ (and $\mu$ if it applies), up to log factors. Previous results with these accelerated rates only worked, given strong g-convexity, in a small neighborhood (initial distance $R$ to a minimizer being $R = O((\mu/L)^{3/4})$). Our rates have a polynomial factor on $1/\cos(R)$ (spherical case) or $\cosh(R)$ (hyperbolic case). Thus, we completely match the Euclidean case for a constant initial distance, and for larger $R$ we incur greater constants due to the geometry. As a proxy for our solution, we solve a constrained non-convex Euclidean problem, under a condition between convexity and \textit{quasar-convexity}, of independent interest. Additionally, for any Riemannian manifold of bounded sectional curvature, we provide reductions from optimization methods for smooth and g-convex functions to methods for smooth and strongly g-convex functions and vice versa.

Cite this Paper


BibTeX
@InProceedings{pmlr-v167-martinez-rubio22a, title = {Global Riemannian Acceleration in Hyperbolic and Spherical Spaces}, author = {Mart\'inez-Rubio, David}, booktitle = {Proceedings of The 33rd International Conference on Algorithmic Learning Theory}, pages = {768--826}, year = {2022}, editor = {Dasgupta, Sanjoy and Haghtalab, Nika}, volume = {167}, series = {Proceedings of Machine Learning Research}, month = {29 Mar--01 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v167/martinez-rubio22a/martinez-rubio22a.pdf}, url = {https://proceedings.mlr.press/v167/martinez-rubio22a.html}, abstract = { We further research on the accelerated optimization phenomenon on Riemannian manifolds by introducing accelerated global first-order methods for the optimization of $L$-smooth and geodesically convex (g-convex) or $\mu$-strongly g-convex functions defined on the hyperbolic space or a subset of the sphere. For a manifold other than the Euclidean space, these are the first methods to \emph{globally} achieve the same rates as accelerated gradient descent in the Euclidean space with respect to $L$ and $\epsilon$ (and $\mu$ if it applies), up to log factors. Previous results with these accelerated rates only worked, given strong g-convexity, in a small neighborhood (initial distance $R$ to a minimizer being $R = O((\mu/L)^{3/4})$). Our rates have a polynomial factor on $1/\cos(R)$ (spherical case) or $\cosh(R)$ (hyperbolic case). Thus, we completely match the Euclidean case for a constant initial distance, and for larger $R$ we incur greater constants due to the geometry. As a proxy for our solution, we solve a constrained non-convex Euclidean problem, under a condition between convexity and \textit{quasar-convexity}, of independent interest. Additionally, for any Riemannian manifold of bounded sectional curvature, we provide reductions from optimization methods for smooth and g-convex functions to methods for smooth and strongly g-convex functions and vice versa. } }
Endnote
%0 Conference Paper %T Global Riemannian Acceleration in Hyperbolic and Spherical Spaces %A David Martínez-Rubio %B Proceedings of The 33rd International Conference on Algorithmic Learning Theory %C Proceedings of Machine Learning Research %D 2022 %E Sanjoy Dasgupta %E Nika Haghtalab %F pmlr-v167-martinez-rubio22a %I PMLR %P 768--826 %U https://proceedings.mlr.press/v167/martinez-rubio22a.html %V 167 %X We further research on the accelerated optimization phenomenon on Riemannian manifolds by introducing accelerated global first-order methods for the optimization of $L$-smooth and geodesically convex (g-convex) or $\mu$-strongly g-convex functions defined on the hyperbolic space or a subset of the sphere. For a manifold other than the Euclidean space, these are the first methods to \emph{globally} achieve the same rates as accelerated gradient descent in the Euclidean space with respect to $L$ and $\epsilon$ (and $\mu$ if it applies), up to log factors. Previous results with these accelerated rates only worked, given strong g-convexity, in a small neighborhood (initial distance $R$ to a minimizer being $R = O((\mu/L)^{3/4})$). Our rates have a polynomial factor on $1/\cos(R)$ (spherical case) or $\cosh(R)$ (hyperbolic case). Thus, we completely match the Euclidean case for a constant initial distance, and for larger $R$ we incur greater constants due to the geometry. As a proxy for our solution, we solve a constrained non-convex Euclidean problem, under a condition between convexity and \textit{quasar-convexity}, of independent interest. Additionally, for any Riemannian manifold of bounded sectional curvature, we provide reductions from optimization methods for smooth and g-convex functions to methods for smooth and strongly g-convex functions and vice versa.
APA
Martínez-Rubio, D.. (2022). Global Riemannian Acceleration in Hyperbolic and Spherical Spaces. Proceedings of The 33rd International Conference on Algorithmic Learning Theory, in Proceedings of Machine Learning Research 167:768-826 Available from https://proceedings.mlr.press/v167/martinez-rubio22a.html.

Related Material