[edit]
Data-driven Control of Unknown Linear Systems via Quantized Feedback
Proceedings of The 4th Annual Learning for Dynamics and Control Conference, PMLR 168:467-479, 2022.
Abstract
Control using quantized feedback is a fundamental approach to system synthesis with limited communication capacity. In this paper, we address the stabilization problem for unknown linear systems with logarithmically quantized feedback, via a direct data-driven control method. By leveraging a recently developed matrix S-lemma, we prove a sufficient and necessary condition for the existence of a common stabilizing controller for all possible dynamics consistent with data, in the form of a linear matrix inequality. Moreover, we formulate a semi-definite programming problem to solve the coarsest quantization density. By establishing its connections to unstable eigenvalues of the state matrix, we further prove a necessary rank condition on the data for quantized feedback stabilization. Finally, we validate our theoretical results by numerical examples.