[edit]

# On the power of adaptivity in statistical adversaries

*Proceedings of Thirty Fifth Conference on Learning Theory*, PMLR 178:5030-5061, 2022.

#### Abstract

We initiate the study of a fundamental question concerning adversarial noise models in statistical problems where the algorithm receives i.i.d. draws from a distribution $\mathcal{D}$. The definitions of these adversaries specify the {\sl type} of allowable corruptions (noise model) as well as {\sl when} these corruptions can be made (adaptivity); the latter differentiates between oblivious adversaries that can only corrupt the distribution $\mathcal{D}$ and adaptive adversaries that can have their corruptions depend on the specific sample $S$ that is drawn from $\mathcal{D}$. We investigate whether oblivious adversaries are effectively equivalent to adaptive adversaries, across all noise models studied in the literature, under a unifying framework that we introduce. Specifically, can the behavior of an algorithm $\mathcal{A}$ in the presence of oblivious adversaries always be well-approximated by that of an algorithm $\mathcal{A}’$ in the presence of adaptive adversaries? Our first result shows that this is indeed the case for the broad class of {\sl statistical query} algorithms, under all reasonable noise models. We then show that in the specific case of {\sl additive noise}, this equivalence holds for {\sl all} algorithms. Finally, we map out an approach towards proving this statement in its fullest generality, for all algorithms and under all reasonable noise models.