[edit]

# EM’s Convergence in Gaussian Latent Tree Models

*Proceedings of Thirty Fifth Conference on Learning Theory*, PMLR 178:2597-2667, 2022.

#### Abstract

We study the optimization landscape of the log-likelihood function and the convergence of the Expectation-Maximization (EM) algorithm in latent Gaussian tree models, i.e. tree-structured Gaussian graphical models whose leaf nodes are observable and non-leaf nodes are unobservable. We show that the unique non-trivial stationary point of the population log-likelihood is its global maximum, and establish that the expectation-maximization algorithm is guaranteed to converge to it in the single latent variable case. Our results for the landscape of the log-likelihood function in general latent tree models provide support for the extensive practical use of maximum likelihood based-methods in this setting. Our results for the expectation-maximization algorithm extend an emerging line of work on obtaining global convergence guarantees for this celebrated algorithm. We show our results for the non-trivial stationary points of the log-likelihood by arguing that a certain system of polynomial equations obtained from the EM updates has a unique non-trivial solution. The global convergence of the EM algorithm follows by arguing that all trivial fixed points are higher-order saddle points.