[edit]

Volume 188: International Conference on Automated Machine Learning, 25-27 July 2022, Johns Hopkins University, Baltimore, MD, USA

[edit]

Editors: Isabelle Guyon, Marius Lindauer, Mihaela van der Schaar, Frank Hutter, Roman Garnett

[bib][citeproc]

Non-Uniform Adversarially Robust Pruning

Qi Zhao, Tim Königl, Christian Wressnegger; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:1/1-16

LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso

Kenan Šehić, Alexandre Gramfort, Joseph Salmon, Luigi Nardi; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:2/1-24

YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization

Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, Bernd Bischl; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:3/1-39

AutoCoG: A Unified Data-Model Co-Search Framework for Graph Neural Networks

Duc N.M Hoang, Kaixiong Zhou, Tianlong Chen, Xia Hu, Zhangyang Wang; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:4/1-16

Automated Super-Network Generation for Scalable Neural Architecture Search

Juan Pablo Munoz, Nikolay Lyalyushkin, Chaunte Willetta Lacewell, Anastasia Senina, Daniel Cummings, Anthony Sarah, Alexander Kozlov, Nilesh Jain; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:5/1-15

Opening the Black Box: Automated Software Analysis for Algorithm Selection

Damir Pulatov, Marie Anastacio, Lars Kotthoff, Holger Hoos; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:6/1-18

Automatic Termination for Hyperparameter Optimization

Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas Krause, Matthias Seeger, Cedric Archambeau; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:7/1-21

Open Source Vizier: Distributed Infrastructure and API for Reliable and Flexible Blackbox Optimization

Xingyou Song, Sagi Perel, Chansoo Lee, Greg Kochanski, Daniel Golovin; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:8/1-17

Tackling Neural Architecture Search With Quality Diversity Optimization

Lennart Schneider, Florian Pfisterer, Paul Kent, Juergen Branke, Bernd Bischl, Janek Thomas; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:9/1-30

A Tree-Structured Multi-Task Model Recommender

Lijun Zhang, Xiao Liu, Hui Guan; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:10/1-12

BERT-Sort: A Zero-shot MLM Semantic Encoder on Ordinal Features for AutoML

Mehdi Bahrami, Wei-Peng Chen, Lei Liu, Mukul Prasad; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:11/1-26

On the Optimality Gap of Warm-Started Hyperparameter Optimization

Parikshit Ram; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:12/1-14

What to expect of hardware metric predictors in NAS

Kevin Alexander Laube, Maximus Mutschler, Andreas Zell; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:13/1-15

Bayesian Generational Population-Based Training

Xingchen Wan, Cong Lu, Jack Parker-Holder, Philip J. Ball, Vu Nguyen, Binxin Ru, Michael Osborne; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:14/1-27

ScaleNAS: Multi-Path One-Shot NAS for Scale-Aware High-Resolution Representation

Hsin-Pai Cheng, Feng Liang, Meng Li, Bowen Cheng, Feng Yan, Hai Li, Vikas Chandra, Yiran Chen; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:15/1-18

Syne Tune: A Library for Large Scale Hyperparameter Tuning and Reproducible Research

David Salinas, Matthias Seeger, Aaron Klein, Valerio Perrone, Martin Wistuba, Cedric Archambeau; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:16/1-23

DIFER: Differentiable Automated Feature Engineering

Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, Yihua Huang; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:17/1-17

When, where, and how to add new neurons to ANNs

Kaitlin Maile, Emmanuel Rachelson, Hervé Luga, Dennis George Wilson; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:18/1-12

Meta-Adapters: Parameter Efficient Few-shot Fine-tuning through Meta-Learning

Trapit Bansal, Salaheddin Alzubi, Tong Wang, Jay-Yoon Lee, Andrew McCallum; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:19/1-18

Differentiable Architecture Search for Reinforcement Learning

Yingjie Miao, Xingyou Song, John D Co-Reyes, Daiyi Peng, Summer Yue, Eugene Brevdo, Aleksandra Faust; Proceedings of the First International Conference on Automated Machine Learning, PMLR 188:20/1-17

subscribe via RSS