Domain Alignment Meets Fully Test-Time Adaptation

Kowshik Thopalli, Pavan Turaga, Jayaraman J Thiagarajan
Proceedings of The 14th Asian Conference on Machine Learning, PMLR 189:1006-1021, 2023.

Abstract

A foundational requirement of a deployed ML model is to generalize to data drawn from a testing distribution that is different from training. A popular solution to this problem is to adapt a pre-trained model to novel domains using only unlabeled data. In this paper, we focus on a challenging variant of this problem, where access to the original source data is restricted. While fully test-time adaptation (FTTA) and unsupervised domain adaptation (UDA) are closely related, the advances in UDA are not readily applicable to TTA, since most UDA methods require access to the source data. Hence, we propose a new approach, CATTAn, that bridges UDA and FTTA, by relaxing the need to access entire source data, through a novel deep subspace alignment strategy. With a minimal overhead of storing the subspace basis set for the source data, CATTAn enables unsupervised alignment between source and target data during adaptation. Through extensive experimental evaluation on multiple 2D and 3D vision benchmar ks (ImageNet-C, Office-31, OfficeHome, DomainNet, PointDA-10) and model architectures, we demonstrate significant gains in FTTA performance. Furthermore, we make a number of crucial findings on the utility of the alignment objective even with inherently robust models, pre-trained ViT representations and under low sample availability in the target domain.

Cite this Paper


BibTeX
@InProceedings{pmlr-v189-thopalli23a, title = {Domain Alignment Meets Fully Test-Time Adaptation}, author = {Thopalli, Kowshik and Turaga, Pavan and Thiagarajan, Jayaraman J}, booktitle = {Proceedings of The 14th Asian Conference on Machine Learning}, pages = {1006--1021}, year = {2023}, editor = {Khan, Emtiyaz and Gonen, Mehmet}, volume = {189}, series = {Proceedings of Machine Learning Research}, month = {12--14 Dec}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v189/thopalli23a/thopalli23a.pdf}, url = {https://proceedings.mlr.press/v189/thopalli23a.html}, abstract = {A foundational requirement of a deployed ML model is to generalize to data drawn from a testing distribution that is different from training. A popular solution to this problem is to adapt a pre-trained model to novel domains using only unlabeled data. In this paper, we focus on a challenging variant of this problem, where access to the original source data is restricted. While fully test-time adaptation (FTTA) and unsupervised domain adaptation (UDA) are closely related, the advances in UDA are not readily applicable to TTA, since most UDA methods require access to the source data. Hence, we propose a new approach, CATTAn, that bridges UDA and FTTA, by relaxing the need to access entire source data, through a novel deep subspace alignment strategy. With a minimal overhead of storing the subspace basis set for the source data, CATTAn enables unsupervised alignment between source and target data during adaptation. Through extensive experimental evaluation on multiple 2D and 3D vision benchmar ks (ImageNet-C, Office-31, OfficeHome, DomainNet, PointDA-10) and model architectures, we demonstrate significant gains in FTTA performance. Furthermore, we make a number of crucial findings on the utility of the alignment objective even with inherently robust models, pre-trained ViT representations and under low sample availability in the target domain.} }
Endnote
%0 Conference Paper %T Domain Alignment Meets Fully Test-Time Adaptation %A Kowshik Thopalli %A Pavan Turaga %A Jayaraman J Thiagarajan %B Proceedings of The 14th Asian Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Emtiyaz Khan %E Mehmet Gonen %F pmlr-v189-thopalli23a %I PMLR %P 1006--1021 %U https://proceedings.mlr.press/v189/thopalli23a.html %V 189 %X A foundational requirement of a deployed ML model is to generalize to data drawn from a testing distribution that is different from training. A popular solution to this problem is to adapt a pre-trained model to novel domains using only unlabeled data. In this paper, we focus on a challenging variant of this problem, where access to the original source data is restricted. While fully test-time adaptation (FTTA) and unsupervised domain adaptation (UDA) are closely related, the advances in UDA are not readily applicable to TTA, since most UDA methods require access to the source data. Hence, we propose a new approach, CATTAn, that bridges UDA and FTTA, by relaxing the need to access entire source data, through a novel deep subspace alignment strategy. With a minimal overhead of storing the subspace basis set for the source data, CATTAn enables unsupervised alignment between source and target data during adaptation. Through extensive experimental evaluation on multiple 2D and 3D vision benchmar ks (ImageNet-C, Office-31, OfficeHome, DomainNet, PointDA-10) and model architectures, we demonstrate significant gains in FTTA performance. Furthermore, we make a number of crucial findings on the utility of the alignment objective even with inherently robust models, pre-trained ViT representations and under low sample availability in the target domain.
APA
Thopalli, K., Turaga, P. & Thiagarajan, J.J.. (2023). Domain Alignment Meets Fully Test-Time Adaptation. Proceedings of The 14th Asian Conference on Machine Learning, in Proceedings of Machine Learning Research 189:1006-1021 Available from https://proceedings.mlr.press/v189/thopalli23a.html.

Related Material