Predicting attrition patterns from pediatric weight management programs

Hamed Fayyaz, Thao-Ly T. Phan, H. Timothy Bunnell, Rahmatollah Beheshti
Proceedings of the 2nd Machine Learning for Health symposium, PMLR 193:326-342, 2022.

Abstract

Obesity is a major public health concern. Multidisciplinary pediatric weight management programs are considered standard treatment for children with obesity who are not able to be successfully managed in the primary care setting. Despite their great potential, high dropout rates (referred to as attrition) are a major hurdle in delivering successful interventions. Predicting attrition patterns can help providers reduce the alarmingly high rates of attrition (up to 80%) by engaging in earlier and more personalized interventions. Previous work has mainly focused on finding static predictors of attrition on smaller datasets and has achieved limited success in effective prediction. In this study, we have collected a five-year comprehensive dataset of 4,550 children from diverse backgrounds receiving treatment at four pediatric weight management programs in the US. We then developed a machine learning pipeline to predict (a) the likelihood of attrition, and (b) the change in body-mass index (BMI) percentile of children, at different time points after joining the weight management program. Our pipeline is greatly customized for this problem using advanced machine learning techniques to process longitudinal data, smaller-size data, and interrelated prediction tasks. The proposed method showed strong prediction performance as measured by AUROC scores (average AUROC of 0.77 for predicting attrition, and 0.78 for predicting weight outcomes).

Cite this Paper


BibTeX
@InProceedings{pmlr-v193-fayyaz22a, title = {Predicting attrition patterns from pediatric weight management programs}, author = {Fayyaz, Hamed and Phan, Thao-Ly T. and Bunnell, H. Timothy and Beheshti, Rahmatollah}, booktitle = {Proceedings of the 2nd Machine Learning for Health symposium}, pages = {326--342}, year = {2022}, editor = {Parziale, Antonio and Agrawal, Monica and Joshi, Shalmali and Chen, Irene Y. and Tang, Shengpu and Oala, Luis and Subbaswamy, Adarsh}, volume = {193}, series = {Proceedings of Machine Learning Research}, month = {28 Nov}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v193/fayyaz22a/fayyaz22a.pdf}, url = {https://proceedings.mlr.press/v193/fayyaz22a.html}, abstract = {Obesity is a major public health concern. Multidisciplinary pediatric weight management programs are considered standard treatment for children with obesity who are not able to be successfully managed in the primary care setting. Despite their great potential, high dropout rates (referred to as attrition) are a major hurdle in delivering successful interventions. Predicting attrition patterns can help providers reduce the alarmingly high rates of attrition (up to 80%) by engaging in earlier and more personalized interventions. Previous work has mainly focused on finding static predictors of attrition on smaller datasets and has achieved limited success in effective prediction. In this study, we have collected a five-year comprehensive dataset of 4,550 children from diverse backgrounds receiving treatment at four pediatric weight management programs in the US. We then developed a machine learning pipeline to predict (a) the likelihood of attrition, and (b) the change in body-mass index (BMI) percentile of children, at different time points after joining the weight management program. Our pipeline is greatly customized for this problem using advanced machine learning techniques to process longitudinal data, smaller-size data, and interrelated prediction tasks. The proposed method showed strong prediction performance as measured by AUROC scores (average AUROC of 0.77 for predicting attrition, and 0.78 for predicting weight outcomes).} }
Endnote
%0 Conference Paper %T Predicting attrition patterns from pediatric weight management programs %A Hamed Fayyaz %A Thao-Ly T. Phan %A H. Timothy Bunnell %A Rahmatollah Beheshti %B Proceedings of the 2nd Machine Learning for Health symposium %C Proceedings of Machine Learning Research %D 2022 %E Antonio Parziale %E Monica Agrawal %E Shalmali Joshi %E Irene Y. Chen %E Shengpu Tang %E Luis Oala %E Adarsh Subbaswamy %F pmlr-v193-fayyaz22a %I PMLR %P 326--342 %U https://proceedings.mlr.press/v193/fayyaz22a.html %V 193 %X Obesity is a major public health concern. Multidisciplinary pediatric weight management programs are considered standard treatment for children with obesity who are not able to be successfully managed in the primary care setting. Despite their great potential, high dropout rates (referred to as attrition) are a major hurdle in delivering successful interventions. Predicting attrition patterns can help providers reduce the alarmingly high rates of attrition (up to 80%) by engaging in earlier and more personalized interventions. Previous work has mainly focused on finding static predictors of attrition on smaller datasets and has achieved limited success in effective prediction. In this study, we have collected a five-year comprehensive dataset of 4,550 children from diverse backgrounds receiving treatment at four pediatric weight management programs in the US. We then developed a machine learning pipeline to predict (a) the likelihood of attrition, and (b) the change in body-mass index (BMI) percentile of children, at different time points after joining the weight management program. Our pipeline is greatly customized for this problem using advanced machine learning techniques to process longitudinal data, smaller-size data, and interrelated prediction tasks. The proposed method showed strong prediction performance as measured by AUROC scores (average AUROC of 0.77 for predicting attrition, and 0.78 for predicting weight outcomes).
APA
Fayyaz, H., Phan, T.T., Bunnell, H.T. & Beheshti, R.. (2022). Predicting attrition patterns from pediatric weight management programs. Proceedings of the 2nd Machine Learning for Health symposium, in Proceedings of Machine Learning Research 193:326-342 Available from https://proceedings.mlr.press/v193/fayyaz22a.html.

Related Material