[edit]
Learning and Testing Latent-Tree Ising Models Efficiently
Proceedings of Thirty Sixth Conference on Learning Theory, PMLR 195:1666-1729, 2023.
Abstract
We provide time- and sample-efficient algorithms for learning and testing latent-tree Ising models, i.e. Ising models that may only be observed at their leaf nodes. On the learning side, we obtain efficient algorithms for learning a tree-structured Ising model whose leaf node distribution is close in Total Variation Distance, improving on the results of \cite{cryan2001evolutionary}. On the testing side, we provide an efficient algorithm with fewer samples for testing whether two latent-tree Ising models have leaf-node distributions that are close or far in Total Variation distance. We obtain our algorithms by showing novel localization results for the total variation distance between the leaf-node distributions of tree-structured Ising models, in terms of their marginals on pairs of leaves.