$\ell_p$-Regression in the Arbitrary Partition Model of Communication

Yi Li, Honghao Lin, David Woodruff
Proceedings of Thirty Sixth Conference on Learning Theory, PMLR 195:4902-4928, 2023.

Abstract

We consider the randomized communication complexity of the distributed $\ell_p$-regression problem in the coordinator model, for $p\in (0,2]$. In this problem, there is a coordinator and $s$ servers. The $i$-th server receives $A^i\in\{-M, -M+1, \ldots, M\}^{n\times d}$ and $b^i\in\{-M, -M+1, \ldots, M\}^n$ and the coordinator would like to find a $(1+\eps)$-approximate solution to $\min_{x\in\R^n} \norm{(\sum_i A^i)x - (\sum_i b^i)}_p$. Here $M \leq \poly(nd)$ for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For $p = 2$, i.e., least squares regression, we give the first optimal bound of $\tilde{\Theta}(sd^2 + sd/\epsilon)$ bits. For $p \in (1,2)$, we obtain an $\tilde{O}(sd^2/\eps + sd/\poly(\eps))$ upper bound. Notably, for $d$ sufficiently large, our leading order term only depends linearly on $1/\epsilon$ rather than quadratically. We also show communication lower bounds of $\Omega(sd^2 + sd/\eps^2)$ for $p\in (0,1]$ and $\Omega(sd^2 + sd/\eps)$ for $p\in (1,2]$. Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vempala et al., SODA, 2020).

Cite this Paper


BibTeX
@InProceedings{pmlr-v195-li23b, title = {$\ell_p$-Regression in the Arbitrary Partition Model of Communication}, author = {Li, Yi and Lin, Honghao and Woodruff, David}, booktitle = {Proceedings of Thirty Sixth Conference on Learning Theory}, pages = {4902--4928}, year = {2023}, editor = {Neu, Gergely and Rosasco, Lorenzo}, volume = {195}, series = {Proceedings of Machine Learning Research}, month = {12--15 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v195/li23b/li23b.pdf}, url = {https://proceedings.mlr.press/v195/li23b.html}, abstract = {We consider the randomized communication complexity of the distributed $\ell_p$-regression problem in the coordinator model, for $p\in (0,2]$. In this problem, there is a coordinator and $s$ servers. The $i$-th server receives $A^i\in\{-M, -M+1, \ldots, M\}^{n\times d}$ and $b^i\in\{-M, -M+1, \ldots, M\}^n$ and the coordinator would like to find a $(1+\eps)$-approximate solution to $\min_{x\in\R^n} \norm{(\sum_i A^i)x - (\sum_i b^i)}_p$. Here $M \leq \poly(nd)$ for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For $p = 2$, i.e., least squares regression, we give the first optimal bound of $\tilde{\Theta}(sd^2 + sd/\epsilon)$ bits. For $p \in (1,2)$, we obtain an $\tilde{O}(sd^2/\eps + sd/\poly(\eps))$ upper bound. Notably, for $d$ sufficiently large, our leading order term only depends linearly on $1/\epsilon$ rather than quadratically. We also show communication lower bounds of $\Omega(sd^2 + sd/\eps^2)$ for $p\in (0,1]$ and $\Omega(sd^2 + sd/\eps)$ for $p\in (1,2]$. Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vempala et al., SODA, 2020). } }
Endnote
%0 Conference Paper %T $\ell_p$-Regression in the Arbitrary Partition Model of Communication %A Yi Li %A Honghao Lin %A David Woodruff %B Proceedings of Thirty Sixth Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2023 %E Gergely Neu %E Lorenzo Rosasco %F pmlr-v195-li23b %I PMLR %P 4902--4928 %U https://proceedings.mlr.press/v195/li23b.html %V 195 %X We consider the randomized communication complexity of the distributed $\ell_p$-regression problem in the coordinator model, for $p\in (0,2]$. In this problem, there is a coordinator and $s$ servers. The $i$-th server receives $A^i\in\{-M, -M+1, \ldots, M\}^{n\times d}$ and $b^i\in\{-M, -M+1, \ldots, M\}^n$ and the coordinator would like to find a $(1+\eps)$-approximate solution to $\min_{x\in\R^n} \norm{(\sum_i A^i)x - (\sum_i b^i)}_p$. Here $M \leq \poly(nd)$ for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For $p = 2$, i.e., least squares regression, we give the first optimal bound of $\tilde{\Theta}(sd^2 + sd/\epsilon)$ bits. For $p \in (1,2)$, we obtain an $\tilde{O}(sd^2/\eps + sd/\poly(\eps))$ upper bound. Notably, for $d$ sufficiently large, our leading order term only depends linearly on $1/\epsilon$ rather than quadratically. We also show communication lower bounds of $\Omega(sd^2 + sd/\eps^2)$ for $p\in (0,1]$ and $\Omega(sd^2 + sd/\eps)$ for $p\in (1,2]$. Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vempala et al., SODA, 2020).
APA
Li, Y., Lin, H. & Woodruff, D.. (2023). $\ell_p$-Regression in the Arbitrary Partition Model of Communication. Proceedings of Thirty Sixth Conference on Learning Theory, in Proceedings of Machine Learning Research 195:4902-4928 Available from https://proceedings.mlr.press/v195/li23b.html.

Related Material