[edit]
Efficient displacement convex optimization with particle gradient descent
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:6836-6854, 2023.
Abstract
Particle gradient descent, which uses particles to represent a probability measure and performs gradient descent on particles in parallel, is widely used to optimize functions of probability measures. This paper considers particle gradient descent with a finite number of particles and establishes its theoretical guarantees to optimize functions that are displacement convex in measures. Concretely, for Lipschitz displacement convex functions defined on probability over $R^d$, we prove that $O(1/\epsilon^2)$ particles and $O(d/\epsilon^4)$ iterations are sufficient to find the $\epsilon$-optimal solutions. We further provide improved complexity bounds for optimizing smooth displacement convex functions. An application of our results proves the conjecture of no optimization-barrier up to permutation invariance, proposed by Entezari et al. (2022), for specific two-layer neural networks with two-dimensional inputs uniformly drawn from unit circle.