Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear Markov Chains

Vishwaraj Doshi, Jie Hu, Do Young Eun
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:8403-8423, 2023.

Abstract

We consider random walks on discrete state spaces, such as general undirected graphs, where the random walkers are designed to approximate a target quantity over the network topology via sampling and neighborhood exploration in the form of Markov chain Monte Carlo (MCMC) procedures. Given any Markov chain corresponding to a target probability distribution, we design a self-repellent random walk (SRRW) which is less likely to transition to nodes that were highly visited in the past, and more likely to transition to seldom visited nodes. For a class of SRRWs parameterized by a positive real $\alpha$, we prove that the empirical distribution of the process converges almost surely to the the target (stationary) distribution of the underlying Markov chain kernel. We then provide a central limit theorem and derive the exact form of the arising asymptotic co-variance matrix, which allows us to show that the SRRW with a stronger repellence (larger $\alpha$) always achieves a smaller asymptotic covariance, in the sense of Loewner ordering of co-variance matrices. Especially for SRRW-driven MCMC algorithms, we show that the decrease in the asymptotic sampling variance is of the order $O(1/\alpha)$, eventually going down to zero. Finally, we provide numerical simulations complimentary to our theoretical results, also empirically testing a version of SRRW with $\alpha$ increasing in time to combine the benefits of smaller asymptotic variance due to large $\alpha$, with empirically observed faster mixing properties of SRRW with smaller $\alpha$.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-doshi23a, title = {Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear {M}arkov Chains}, author = {Doshi, Vishwaraj and Hu, Jie and Eun, Do Young}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {8403--8423}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/doshi23a/doshi23a.pdf}, url = {https://proceedings.mlr.press/v202/doshi23a.html}, abstract = {We consider random walks on discrete state spaces, such as general undirected graphs, where the random walkers are designed to approximate a target quantity over the network topology via sampling and neighborhood exploration in the form of Markov chain Monte Carlo (MCMC) procedures. Given any Markov chain corresponding to a target probability distribution, we design a self-repellent random walk (SRRW) which is less likely to transition to nodes that were highly visited in the past, and more likely to transition to seldom visited nodes. For a class of SRRWs parameterized by a positive real $\alpha$, we prove that the empirical distribution of the process converges almost surely to the the target (stationary) distribution of the underlying Markov chain kernel. We then provide a central limit theorem and derive the exact form of the arising asymptotic co-variance matrix, which allows us to show that the SRRW with a stronger repellence (larger $\alpha$) always achieves a smaller asymptotic covariance, in the sense of Loewner ordering of co-variance matrices. Especially for SRRW-driven MCMC algorithms, we show that the decrease in the asymptotic sampling variance is of the order $O(1/\alpha)$, eventually going down to zero. Finally, we provide numerical simulations complimentary to our theoretical results, also empirically testing a version of SRRW with $\alpha$ increasing in time to combine the benefits of smaller asymptotic variance due to large $\alpha$, with empirically observed faster mixing properties of SRRW with smaller $\alpha$.} }
Endnote
%0 Conference Paper %T Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear Markov Chains %A Vishwaraj Doshi %A Jie Hu %A Do Young Eun %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-doshi23a %I PMLR %P 8403--8423 %U https://proceedings.mlr.press/v202/doshi23a.html %V 202 %X We consider random walks on discrete state spaces, such as general undirected graphs, where the random walkers are designed to approximate a target quantity over the network topology via sampling and neighborhood exploration in the form of Markov chain Monte Carlo (MCMC) procedures. Given any Markov chain corresponding to a target probability distribution, we design a self-repellent random walk (SRRW) which is less likely to transition to nodes that were highly visited in the past, and more likely to transition to seldom visited nodes. For a class of SRRWs parameterized by a positive real $\alpha$, we prove that the empirical distribution of the process converges almost surely to the the target (stationary) distribution of the underlying Markov chain kernel. We then provide a central limit theorem and derive the exact form of the arising asymptotic co-variance matrix, which allows us to show that the SRRW with a stronger repellence (larger $\alpha$) always achieves a smaller asymptotic covariance, in the sense of Loewner ordering of co-variance matrices. Especially for SRRW-driven MCMC algorithms, we show that the decrease in the asymptotic sampling variance is of the order $O(1/\alpha)$, eventually going down to zero. Finally, we provide numerical simulations complimentary to our theoretical results, also empirically testing a version of SRRW with $\alpha$ increasing in time to combine the benefits of smaller asymptotic variance due to large $\alpha$, with empirically observed faster mixing properties of SRRW with smaller $\alpha$.
APA
Doshi, V., Hu, J. & Eun, D.Y.. (2023). Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear Markov Chains. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:8403-8423 Available from https://proceedings.mlr.press/v202/doshi23a.html.

Related Material