Robust Non-Linear Feedback Coding via Power-Constrained Deep Learning

Junghoon Kim, Taejoon Kim, David Love, Christopher Brinton
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:16599-16618, 2023.

Abstract

The design of codes for feedback-enabled communications has been a long-standing open problem. Recent research on non-linear, deep learning-based coding schemes have demonstrated significant improvements in communication reliability over linear codes, but are still vulnerable to the presence of forward and feedback noise over the channel. In this paper, we develop a new family of non-linear feedback codes that greatly enhance robustness to channel noise. Our autoencoder-based architecture is designed to learn codes based on consecutive blocks of bits, which obtains de-noising advantages over bit-by-bit processing to help overcome the physical separation between the encoder and decoder over a noisy channel. Moreover, we develop a power control layer at the encoder to explicitly incorporate hardware constraints into the learning optimization, and prove that the resulting average power constraint is satisfied asymptotically. Numerical experiments demonstrate that our scheme outperforms state-of-the-art feedback codes by wide margins over practical forward and feedback noise regimes, and provide information-theoretic insights on the behavior of our non-linear codes. Moreover, we observe that, in a long blocklength regime, canonical error correction codes are still preferable to feedback codes when the feedback noise becomes high. Our code is available at https://anonymous.4open.science/r/RCode1.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-kim23j, title = {Robust Non-Linear Feedback Coding via Power-Constrained Deep Learning}, author = {Kim, Junghoon and Kim, Taejoon and Love, David and Brinton, Christopher}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {16599--16618}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/kim23j/kim23j.pdf}, url = {https://proceedings.mlr.press/v202/kim23j.html}, abstract = {The design of codes for feedback-enabled communications has been a long-standing open problem. Recent research on non-linear, deep learning-based coding schemes have demonstrated significant improvements in communication reliability over linear codes, but are still vulnerable to the presence of forward and feedback noise over the channel. In this paper, we develop a new family of non-linear feedback codes that greatly enhance robustness to channel noise. Our autoencoder-based architecture is designed to learn codes based on consecutive blocks of bits, which obtains de-noising advantages over bit-by-bit processing to help overcome the physical separation between the encoder and decoder over a noisy channel. Moreover, we develop a power control layer at the encoder to explicitly incorporate hardware constraints into the learning optimization, and prove that the resulting average power constraint is satisfied asymptotically. Numerical experiments demonstrate that our scheme outperforms state-of-the-art feedback codes by wide margins over practical forward and feedback noise regimes, and provide information-theoretic insights on the behavior of our non-linear codes. Moreover, we observe that, in a long blocklength regime, canonical error correction codes are still preferable to feedback codes when the feedback noise becomes high. Our code is available at https://anonymous.4open.science/r/RCode1.} }
Endnote
%0 Conference Paper %T Robust Non-Linear Feedback Coding via Power-Constrained Deep Learning %A Junghoon Kim %A Taejoon Kim %A David Love %A Christopher Brinton %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-kim23j %I PMLR %P 16599--16618 %U https://proceedings.mlr.press/v202/kim23j.html %V 202 %X The design of codes for feedback-enabled communications has been a long-standing open problem. Recent research on non-linear, deep learning-based coding schemes have demonstrated significant improvements in communication reliability over linear codes, but are still vulnerable to the presence of forward and feedback noise over the channel. In this paper, we develop a new family of non-linear feedback codes that greatly enhance robustness to channel noise. Our autoencoder-based architecture is designed to learn codes based on consecutive blocks of bits, which obtains de-noising advantages over bit-by-bit processing to help overcome the physical separation between the encoder and decoder over a noisy channel. Moreover, we develop a power control layer at the encoder to explicitly incorporate hardware constraints into the learning optimization, and prove that the resulting average power constraint is satisfied asymptotically. Numerical experiments demonstrate that our scheme outperforms state-of-the-art feedback codes by wide margins over practical forward and feedback noise regimes, and provide information-theoretic insights on the behavior of our non-linear codes. Moreover, we observe that, in a long blocklength regime, canonical error correction codes are still preferable to feedback codes when the feedback noise becomes high. Our code is available at https://anonymous.4open.science/r/RCode1.
APA
Kim, J., Kim, T., Love, D. & Brinton, C.. (2023). Robust Non-Linear Feedback Coding via Power-Constrained Deep Learning. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:16599-16618 Available from https://proceedings.mlr.press/v202/kim23j.html.

Related Material