Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression: Fast Convergence and Partial Participation

Xiaoyun Li, Ping Li
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:19638-19688, 2023.

Abstract

In practical federated learning (FL) systems, the communication cost between the clients and the central server can often be a bottleneck. In this paper, we focus on biased gradient compression in non-convex FL problems. In the classical distributed learning, the method of error feedback (EF) is a common technique to remedy the downsides of biased gradient compression, but the performance of EF in FL still lacks systematic investigation. In this work, we study a compressed FL scheme with error feedback, named Fed-EF, with two variants depending on the global model optimizer. While directly applying biased compression in FL leads to poor convergence, we show that Fed-EF is able to match the convergence rate of the full-precision FL counterpart with a linear speedup w.r.t. the number of clients. Experiments verify that Fed-EF achieves the same performance as the full-precision FL approach, at the substantially reduced communication cost. Moreover, we develop a new analysis of the EF under partial participation (PP), an important scenario in FL. Under PP, the convergence rate of Fed-EF exhibits an extra slow-down factor due to a so-called “stale error compensation” effect, which is also justified in our experiments. Our results provide insights on a theoretical limitation of EF, and possible directions for improvements.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-li23o, title = {Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression: Fast Convergence and Partial Participation}, author = {Li, Xiaoyun and Li, Ping}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {19638--19688}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/li23o/li23o.pdf}, url = {https://proceedings.mlr.press/v202/li23o.html}, abstract = {In practical federated learning (FL) systems, the communication cost between the clients and the central server can often be a bottleneck. In this paper, we focus on biased gradient compression in non-convex FL problems. In the classical distributed learning, the method of error feedback (EF) is a common technique to remedy the downsides of biased gradient compression, but the performance of EF in FL still lacks systematic investigation. In this work, we study a compressed FL scheme with error feedback, named Fed-EF, with two variants depending on the global model optimizer. While directly applying biased compression in FL leads to poor convergence, we show that Fed-EF is able to match the convergence rate of the full-precision FL counterpart with a linear speedup w.r.t. the number of clients. Experiments verify that Fed-EF achieves the same performance as the full-precision FL approach, at the substantially reduced communication cost. Moreover, we develop a new analysis of the EF under partial participation (PP), an important scenario in FL. Under PP, the convergence rate of Fed-EF exhibits an extra slow-down factor due to a so-called “stale error compensation” effect, which is also justified in our experiments. Our results provide insights on a theoretical limitation of EF, and possible directions for improvements.} }
Endnote
%0 Conference Paper %T Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression: Fast Convergence and Partial Participation %A Xiaoyun Li %A Ping Li %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-li23o %I PMLR %P 19638--19688 %U https://proceedings.mlr.press/v202/li23o.html %V 202 %X In practical federated learning (FL) systems, the communication cost between the clients and the central server can often be a bottleneck. In this paper, we focus on biased gradient compression in non-convex FL problems. In the classical distributed learning, the method of error feedback (EF) is a common technique to remedy the downsides of biased gradient compression, but the performance of EF in FL still lacks systematic investigation. In this work, we study a compressed FL scheme with error feedback, named Fed-EF, with two variants depending on the global model optimizer. While directly applying biased compression in FL leads to poor convergence, we show that Fed-EF is able to match the convergence rate of the full-precision FL counterpart with a linear speedup w.r.t. the number of clients. Experiments verify that Fed-EF achieves the same performance as the full-precision FL approach, at the substantially reduced communication cost. Moreover, we develop a new analysis of the EF under partial participation (PP), an important scenario in FL. Under PP, the convergence rate of Fed-EF exhibits an extra slow-down factor due to a so-called “stale error compensation” effect, which is also justified in our experiments. Our results provide insights on a theoretical limitation of EF, and possible directions for improvements.
APA
Li, X. & Li, P.. (2023). Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression: Fast Convergence and Partial Participation. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:19638-19688 Available from https://proceedings.mlr.press/v202/li23o.html.

Related Material