Neural signature kernels as infinite-width-depth-limits of controlled ResNets

Nicola Muca Cirone, Maud Lemercier, Cristopher Salvi
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:25358-25425, 2023.

Abstract

Motivated by the paradigm of reservoir computing, we consider randomly initialized controlled ResNets defined as Euler-discretizations of neural controlled differential equations (Neural CDEs), a unified architecture which enconpasses both RNNs and ResNets. We show that in the infinite-width-depth limit and under proper scaling, these architectures converge weakly to Gaussian processes indexed on some spaces of continuous paths and with kernels satisfying certain partial differential equations (PDEs) varying according to the choice of activation function $\varphi$, extending the results of Hayou (2022); Hayou & Yang (2023) to the controlled and homogeneous case. In the special, homogeneous, case where $\varphi$ is the identity, we show that the equation reduces to a linear PDE and the limiting kernel agrees with the signature kernel of Salvi et al. (2021a). We name this new family of limiting kernels neural signature kernels. Finally, we show that in the infinite-depth regime, finite-width controlled ResNets converge in distribution to Neural CDEs with random vector fields which, depending on whether the weights are shared across layers, are either time-independent and Gaussian or behave like a matrix-valued Brownian motion.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-muca-cirone23a, title = {Neural signature kernels as infinite-width-depth-limits of controlled {R}es{N}ets}, author = {Muca Cirone, Nicola and Lemercier, Maud and Salvi, Cristopher}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {25358--25425}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/muca-cirone23a/muca-cirone23a.pdf}, url = {https://proceedings.mlr.press/v202/muca-cirone23a.html}, abstract = {Motivated by the paradigm of reservoir computing, we consider randomly initialized controlled ResNets defined as Euler-discretizations of neural controlled differential equations (Neural CDEs), a unified architecture which enconpasses both RNNs and ResNets. We show that in the infinite-width-depth limit and under proper scaling, these architectures converge weakly to Gaussian processes indexed on some spaces of continuous paths and with kernels satisfying certain partial differential equations (PDEs) varying according to the choice of activation function $\varphi$, extending the results of Hayou (2022); Hayou & Yang (2023) to the controlled and homogeneous case. In the special, homogeneous, case where $\varphi$ is the identity, we show that the equation reduces to a linear PDE and the limiting kernel agrees with the signature kernel of Salvi et al. (2021a). We name this new family of limiting kernels neural signature kernels. Finally, we show that in the infinite-depth regime, finite-width controlled ResNets converge in distribution to Neural CDEs with random vector fields which, depending on whether the weights are shared across layers, are either time-independent and Gaussian or behave like a matrix-valued Brownian motion.} }
Endnote
%0 Conference Paper %T Neural signature kernels as infinite-width-depth-limits of controlled ResNets %A Nicola Muca Cirone %A Maud Lemercier %A Cristopher Salvi %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-muca-cirone23a %I PMLR %P 25358--25425 %U https://proceedings.mlr.press/v202/muca-cirone23a.html %V 202 %X Motivated by the paradigm of reservoir computing, we consider randomly initialized controlled ResNets defined as Euler-discretizations of neural controlled differential equations (Neural CDEs), a unified architecture which enconpasses both RNNs and ResNets. We show that in the infinite-width-depth limit and under proper scaling, these architectures converge weakly to Gaussian processes indexed on some spaces of continuous paths and with kernels satisfying certain partial differential equations (PDEs) varying according to the choice of activation function $\varphi$, extending the results of Hayou (2022); Hayou & Yang (2023) to the controlled and homogeneous case. In the special, homogeneous, case where $\varphi$ is the identity, we show that the equation reduces to a linear PDE and the limiting kernel agrees with the signature kernel of Salvi et al. (2021a). We name this new family of limiting kernels neural signature kernels. Finally, we show that in the infinite-depth regime, finite-width controlled ResNets converge in distribution to Neural CDEs with random vector fields which, depending on whether the weights are shared across layers, are either time-independent and Gaussian or behave like a matrix-valued Brownian motion.
APA
Muca Cirone, N., Lemercier, M. & Salvi, C.. (2023). Neural signature kernels as infinite-width-depth-limits of controlled ResNets. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:25358-25425 Available from https://proceedings.mlr.press/v202/muca-cirone23a.html.

Related Material