Facial Expression Recognition with Adaptive Frame Rate based on Multiple Testing Correction

Andrey Savchenko
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:30119-30129, 2023.

Abstract

In this paper, we consider the problem of the high computational complexity of video-based facial expression recognition. A novel sequential procedure is proposed with an adaptive frame rate selection in a short video fragment to speed up decision-making. We automatically adjust the frame rate and process fewer frames with a low frame rate for more straightforward videos and more frames for complex ones. To determine the frame rate at which an inference is sufficiently reliable, the Benjamini-Hochberg procedure from multiple comparisons theory is employed to control the false discovery rate. The main advantages of our method are an improvement of the trustworthiness of decision-making by maintaining only one hyper-parameter (false acceptance rate) and its applicability with arbitrary neural network models used as facial feature extractors without the need to re-train these models. An experimental study on datasets from ABAW and EmotiW challenges proves the superior performance (1.5-40 times faster) of the proposed approach compared to processing all frames and existing techniques with early exiting and adaptive frame selection.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-savchenko23a, title = {Facial Expression Recognition with Adaptive Frame Rate based on Multiple Testing Correction}, author = {Savchenko, Andrey}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {30119--30129}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/savchenko23a/savchenko23a.pdf}, url = {https://proceedings.mlr.press/v202/savchenko23a.html}, abstract = {In this paper, we consider the problem of the high computational complexity of video-based facial expression recognition. A novel sequential procedure is proposed with an adaptive frame rate selection in a short video fragment to speed up decision-making. We automatically adjust the frame rate and process fewer frames with a low frame rate for more straightforward videos and more frames for complex ones. To determine the frame rate at which an inference is sufficiently reliable, the Benjamini-Hochberg procedure from multiple comparisons theory is employed to control the false discovery rate. The main advantages of our method are an improvement of the trustworthiness of decision-making by maintaining only one hyper-parameter (false acceptance rate) and its applicability with arbitrary neural network models used as facial feature extractors without the need to re-train these models. An experimental study on datasets from ABAW and EmotiW challenges proves the superior performance (1.5-40 times faster) of the proposed approach compared to processing all frames and existing techniques with early exiting and adaptive frame selection.} }
Endnote
%0 Conference Paper %T Facial Expression Recognition with Adaptive Frame Rate based on Multiple Testing Correction %A Andrey Savchenko %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-savchenko23a %I PMLR %P 30119--30129 %U https://proceedings.mlr.press/v202/savchenko23a.html %V 202 %X In this paper, we consider the problem of the high computational complexity of video-based facial expression recognition. A novel sequential procedure is proposed with an adaptive frame rate selection in a short video fragment to speed up decision-making. We automatically adjust the frame rate and process fewer frames with a low frame rate for more straightforward videos and more frames for complex ones. To determine the frame rate at which an inference is sufficiently reliable, the Benjamini-Hochberg procedure from multiple comparisons theory is employed to control the false discovery rate. The main advantages of our method are an improvement of the trustworthiness of decision-making by maintaining only one hyper-parameter (false acceptance rate) and its applicability with arbitrary neural network models used as facial feature extractors without the need to re-train these models. An experimental study on datasets from ABAW and EmotiW challenges proves the superior performance (1.5-40 times faster) of the proposed approach compared to processing all frames and existing techniques with early exiting and adaptive frame selection.
APA
Savchenko, A.. (2023). Facial Expression Recognition with Adaptive Frame Rate based on Multiple Testing Correction. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:30119-30129 Available from https://proceedings.mlr.press/v202/savchenko23a.html.

Related Material