Direct Parameterization of Lipschitz-Bounded Deep Networks

Ruigang Wang, Ian Manchester
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:36093-36110, 2023.

Abstract

This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed $\ell^2$ Lipschitz bounds, i.e. limited sensitivity to input perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP). We provide a “direct” parameterization, i.e., a smooth mapping from $\mathbb R^N$ onto the set of weights satisfying the SDP-based bound. Moreover, our parameterization is complete, i.e. a neural network satisfies the SDP bound if and only if it can be represented via our parameterization. This enables training using standard gradient methods, without any inner approximation or computationally intensive tasks (e.g. projections or barrier terms) for the SDP constraint. The new parameterization can equivalently be thought of as either a new layer type (the sandwich layer), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. A comprehensive set of experiments on image classification shows that sandwich layers outperform previous approaches on both empirical and certified robust accuracy. Code is available at https://github.com/acfr/LBDN.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-wang23v, title = {Direct Parameterization of {L}ipschitz-Bounded Deep Networks}, author = {Wang, Ruigang and Manchester, Ian}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {36093--36110}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/wang23v/wang23v.pdf}, url = {https://proceedings.mlr.press/v202/wang23v.html}, abstract = {This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed $\ell^2$ Lipschitz bounds, i.e. limited sensitivity to input perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP). We provide a “direct” parameterization, i.e., a smooth mapping from $\mathbb R^N$ onto the set of weights satisfying the SDP-based bound. Moreover, our parameterization is complete, i.e. a neural network satisfies the SDP bound if and only if it can be represented via our parameterization. This enables training using standard gradient methods, without any inner approximation or computationally intensive tasks (e.g. projections or barrier terms) for the SDP constraint. The new parameterization can equivalently be thought of as either a new layer type (the sandwich layer), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. A comprehensive set of experiments on image classification shows that sandwich layers outperform previous approaches on both empirical and certified robust accuracy. Code is available at https://github.com/acfr/LBDN.} }
Endnote
%0 Conference Paper %T Direct Parameterization of Lipschitz-Bounded Deep Networks %A Ruigang Wang %A Ian Manchester %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-wang23v %I PMLR %P 36093--36110 %U https://proceedings.mlr.press/v202/wang23v.html %V 202 %X This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed $\ell^2$ Lipschitz bounds, i.e. limited sensitivity to input perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP). We provide a “direct” parameterization, i.e., a smooth mapping from $\mathbb R^N$ onto the set of weights satisfying the SDP-based bound. Moreover, our parameterization is complete, i.e. a neural network satisfies the SDP bound if and only if it can be represented via our parameterization. This enables training using standard gradient methods, without any inner approximation or computationally intensive tasks (e.g. projections or barrier terms) for the SDP constraint. The new parameterization can equivalently be thought of as either a new layer type (the sandwich layer), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. A comprehensive set of experiments on image classification shows that sandwich layers outperform previous approaches on both empirical and certified robust accuracy. Code is available at https://github.com/acfr/LBDN.
APA
Wang, R. & Manchester, I.. (2023). Direct Parameterization of Lipschitz-Bounded Deep Networks. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:36093-36110 Available from https://proceedings.mlr.press/v202/wang23v.html.

Related Material