Universal Morphology Control via Contextual Modulation

Zheng Xiong, Jacob Beck, Shimon Whiteson
Proceedings of the 40th International Conference on Machine Learning, PMLR 202:38286-38300, 2023.

Abstract

Learning a universal policy across different robot morphologies can significantly improve learning efficiency and generalization in continuous control. However, it poses a challenging multi-task reinforcement learning problem, as the optimal policy may be quite different across robots and critically depend on the morphology. Existing methods utilize graph neural networks or transformers to handle heterogeneous state and action spaces across different morphologies, but pay little attention to the dependency of a robot’s control policy on its morphology context. In this paper, we propose a hierarchical architecture to better model this dependency via contextual modulation, which includes two key submodules: (1) Instead of enforcing hard parameter sharing across robots, we use hypernetworks to generate morphology-dependent control parameters; (2) We propose a fixed attention mechanism that solely depends on the morphology to modulate the interactions between different limbs in a robot. Experimental results show that our method not only improves learning performance on a diverse set of training robots, but also generalizes better to unseen morphologies in a zero-shot fashion. The code is publicly available at https://github.com/MasterXiong/ModuMorph.

Cite this Paper


BibTeX
@InProceedings{pmlr-v202-xiong23a, title = {Universal Morphology Control via Contextual Modulation}, author = {Xiong, Zheng and Beck, Jacob and Whiteson, Shimon}, booktitle = {Proceedings of the 40th International Conference on Machine Learning}, pages = {38286--38300}, year = {2023}, editor = {Krause, Andreas and Brunskill, Emma and Cho, Kyunghyun and Engelhardt, Barbara and Sabato, Sivan and Scarlett, Jonathan}, volume = {202}, series = {Proceedings of Machine Learning Research}, month = {23--29 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v202/xiong23a/xiong23a.pdf}, url = {https://proceedings.mlr.press/v202/xiong23a.html}, abstract = {Learning a universal policy across different robot morphologies can significantly improve learning efficiency and generalization in continuous control. However, it poses a challenging multi-task reinforcement learning problem, as the optimal policy may be quite different across robots and critically depend on the morphology. Existing methods utilize graph neural networks or transformers to handle heterogeneous state and action spaces across different morphologies, but pay little attention to the dependency of a robot’s control policy on its morphology context. In this paper, we propose a hierarchical architecture to better model this dependency via contextual modulation, which includes two key submodules: (1) Instead of enforcing hard parameter sharing across robots, we use hypernetworks to generate morphology-dependent control parameters; (2) We propose a fixed attention mechanism that solely depends on the morphology to modulate the interactions between different limbs in a robot. Experimental results show that our method not only improves learning performance on a diverse set of training robots, but also generalizes better to unseen morphologies in a zero-shot fashion. The code is publicly available at https://github.com/MasterXiong/ModuMorph.} }
Endnote
%0 Conference Paper %T Universal Morphology Control via Contextual Modulation %A Zheng Xiong %A Jacob Beck %A Shimon Whiteson %B Proceedings of the 40th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2023 %E Andreas Krause %E Emma Brunskill %E Kyunghyun Cho %E Barbara Engelhardt %E Sivan Sabato %E Jonathan Scarlett %F pmlr-v202-xiong23a %I PMLR %P 38286--38300 %U https://proceedings.mlr.press/v202/xiong23a.html %V 202 %X Learning a universal policy across different robot morphologies can significantly improve learning efficiency and generalization in continuous control. However, it poses a challenging multi-task reinforcement learning problem, as the optimal policy may be quite different across robots and critically depend on the morphology. Existing methods utilize graph neural networks or transformers to handle heterogeneous state and action spaces across different morphologies, but pay little attention to the dependency of a robot’s control policy on its morphology context. In this paper, we propose a hierarchical architecture to better model this dependency via contextual modulation, which includes two key submodules: (1) Instead of enforcing hard parameter sharing across robots, we use hypernetworks to generate morphology-dependent control parameters; (2) We propose a fixed attention mechanism that solely depends on the morphology to modulate the interactions between different limbs in a robot. Experimental results show that our method not only improves learning performance on a diverse set of training robots, but also generalizes better to unseen morphologies in a zero-shot fashion. The code is publicly available at https://github.com/MasterXiong/ModuMorph.
APA
Xiong, Z., Beck, J. & Whiteson, S.. (2023). Universal Morphology Control via Contextual Modulation. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:38286-38300 Available from https://proceedings.mlr.press/v202/xiong23a.html.

Related Material