[edit]
The Role of Codeword-to-Class Assignments in Error-Correcting Codes: An Empirical Study
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:8053-8077, 2023.
Abstract
Error-correcting codes (ECC) are used to reduce multiclass classification tasks to multiple binary classification subproblems. In ECC, classes are represented by the rows of a binary matrix, corresponding to codewords in a codebook. Codebooks are commonly either predefined or problem dependent. Given predefined codebooks, codeword-to-class assignments are traditionally overlooked, and codewords are implicitly assigned to classes arbitrarily. Our paper shows that these assignments play a major role in the performance of ECC. Specifically, we examine similarity-preserving assignments, where similar codewords are assigned to similar classes. Addressing a controversy in existing literature, our extensive experiments confirm that similarity-preserving assignments induce easier subproblems and are superior to other assignment policies in terms of their generalization performance. We find that similarity-preserving assignments make predefined codebooks become problem-dependent, without altering other favorable codebook properties. Finally, we show that our findings can improve predefined codebooks dedicated to extreme classification.