Online Learning for Traffic Routing under Unknown Preferences

Devansh Jalota, Karthik Gopalakrishnan, Navid Azizan, Ramesh Johari, Marco Pavone
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:3210-3229, 2023.

Abstract

In transportation networks, road tolling schemes are a method to cope with the efficiency losses due to selfish user routing, wherein users choose routes to minimize individual travel costs. However, the efficacy of tolling schemes often relies on access to complete information on users’ trip attributes, such as their origin-destination (O-D) travel information and their values of time, which may not be available in practice. Motivated by this practical consideration, we propose an online learning approach to set tolls in a traffic network to drive heterogeneous users with different values of time toward a system-efficient traffic pattern. In particular, we develop a simple yet effective algorithm that adjusts tolls at each time period solely based on the observed aggregate flows on the roads of the network without relying on any additional trip attributes of users, thereby preserving user privacy. In the setting where the O-D pairs and values of time of users are drawn i.i.d. at each period, we show that our approach obtains an expected regret and road capacity violation of $O(\sqrt{T})$, where $T$ is the number of periods over which tolls are updated. Our regret guarantee is relative to an offline oracle with complete information on users’ trip attributes. We further establish a $\Omega(\sqrt{T})$ lower bound on the regret of any algorithm, which establishes that our algorithm is optimal up to constants. Finally, we demonstrate the superior performance of our approach relative to several benchmarks on a real-world traffic network, which highlights its practical applicability.

Cite this Paper


BibTeX
@InProceedings{pmlr-v206-jalota23a, title = {Online Learning for Traffic Routing under Unknown Preferences}, author = {Jalota, Devansh and Gopalakrishnan, Karthik and Azizan, Navid and Johari, Ramesh and Pavone, Marco}, booktitle = {Proceedings of The 26th International Conference on Artificial Intelligence and Statistics}, pages = {3210--3229}, year = {2023}, editor = {Ruiz, Francisco and Dy, Jennifer and van de Meent, Jan-Willem}, volume = {206}, series = {Proceedings of Machine Learning Research}, month = {25--27 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v206/jalota23a/jalota23a.pdf}, url = {https://proceedings.mlr.press/v206/jalota23a.html}, abstract = {In transportation networks, road tolling schemes are a method to cope with the efficiency losses due to selfish user routing, wherein users choose routes to minimize individual travel costs. However, the efficacy of tolling schemes often relies on access to complete information on users’ trip attributes, such as their origin-destination (O-D) travel information and their values of time, which may not be available in practice. Motivated by this practical consideration, we propose an online learning approach to set tolls in a traffic network to drive heterogeneous users with different values of time toward a system-efficient traffic pattern. In particular, we develop a simple yet effective algorithm that adjusts tolls at each time period solely based on the observed aggregate flows on the roads of the network without relying on any additional trip attributes of users, thereby preserving user privacy. In the setting where the O-D pairs and values of time of users are drawn i.i.d. at each period, we show that our approach obtains an expected regret and road capacity violation of $O(\sqrt{T})$, where $T$ is the number of periods over which tolls are updated. Our regret guarantee is relative to an offline oracle with complete information on users’ trip attributes. We further establish a $\Omega(\sqrt{T})$ lower bound on the regret of any algorithm, which establishes that our algorithm is optimal up to constants. Finally, we demonstrate the superior performance of our approach relative to several benchmarks on a real-world traffic network, which highlights its practical applicability.} }
Endnote
%0 Conference Paper %T Online Learning for Traffic Routing under Unknown Preferences %A Devansh Jalota %A Karthik Gopalakrishnan %A Navid Azizan %A Ramesh Johari %A Marco Pavone %B Proceedings of The 26th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2023 %E Francisco Ruiz %E Jennifer Dy %E Jan-Willem van de Meent %F pmlr-v206-jalota23a %I PMLR %P 3210--3229 %U https://proceedings.mlr.press/v206/jalota23a.html %V 206 %X In transportation networks, road tolling schemes are a method to cope with the efficiency losses due to selfish user routing, wherein users choose routes to minimize individual travel costs. However, the efficacy of tolling schemes often relies on access to complete information on users’ trip attributes, such as their origin-destination (O-D) travel information and their values of time, which may not be available in practice. Motivated by this practical consideration, we propose an online learning approach to set tolls in a traffic network to drive heterogeneous users with different values of time toward a system-efficient traffic pattern. In particular, we develop a simple yet effective algorithm that adjusts tolls at each time period solely based on the observed aggregate flows on the roads of the network without relying on any additional trip attributes of users, thereby preserving user privacy. In the setting where the O-D pairs and values of time of users are drawn i.i.d. at each period, we show that our approach obtains an expected regret and road capacity violation of $O(\sqrt{T})$, where $T$ is the number of periods over which tolls are updated. Our regret guarantee is relative to an offline oracle with complete information on users’ trip attributes. We further establish a $\Omega(\sqrt{T})$ lower bound on the regret of any algorithm, which establishes that our algorithm is optimal up to constants. Finally, we demonstrate the superior performance of our approach relative to several benchmarks on a real-world traffic network, which highlights its practical applicability.
APA
Jalota, D., Gopalakrishnan, K., Azizan, N., Johari, R. & Pavone, M.. (2023). Online Learning for Traffic Routing under Unknown Preferences. Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 206:3210-3229 Available from https://proceedings.mlr.press/v206/jalota23a.html.

Related Material