On Model Selection Consistency of Lasso for High-Dimensional Ising Models

Xiangming Meng, Tomoyuki Obuchi, Yoshiyuki Kabashima
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:6783-6805, 2023.

Abstract

We theoretically analyze the model selection consistency of least absolute shrinkage and selection operator (Lasso), both with and without post-thresholding, for high-dimensional Ising models. For random regular (RR) graphs of size $p$ with regular node degree $d$ and uniform couplings $\theta_0$, it is rigorously proved that Lasso without post-thresholding is model selection consistent in the whole paramagnetic phase with the same order of sample complexity $n=\Omega{(d^3\log{p})}$ as that of $\ell_1$-regularized logistic regression ($\ell_1$-LogR). This result is consistent with the conjecture in Meng, Obuchi, and Kabashima 2021 using the non-rigorous replica method from statistical physics and thus complements it with a rigorous proof. For general tree-like graphs, it is demonstrated that the same result as RR graphs can be obtained under mild assumptions of the dependency condition and incoherence condition. Moreover, we provide a rigorous proof of the model selection consistency of Lasso with post-thresholding for general tree-like graphs in the paramagnetic phase without further assumptions on the dependency and incoherence conditions. Experimental results agree well with our theoretical analysis.

Cite this Paper


BibTeX
@InProceedings{pmlr-v206-meng23a, title = {On Model Selection Consistency of Lasso for High-Dimensional Ising Models}, author = {Meng, Xiangming and Obuchi, Tomoyuki and Kabashima, Yoshiyuki}, booktitle = {Proceedings of The 26th International Conference on Artificial Intelligence and Statistics}, pages = {6783--6805}, year = {2023}, editor = {Ruiz, Francisco and Dy, Jennifer and van de Meent, Jan-Willem}, volume = {206}, series = {Proceedings of Machine Learning Research}, month = {25--27 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v206/meng23a/meng23a.pdf}, url = {https://proceedings.mlr.press/v206/meng23a.html}, abstract = {We theoretically analyze the model selection consistency of least absolute shrinkage and selection operator (Lasso), both with and without post-thresholding, for high-dimensional Ising models. For random regular (RR) graphs of size $p$ with regular node degree $d$ and uniform couplings $\theta_0$, it is rigorously proved that Lasso without post-thresholding is model selection consistent in the whole paramagnetic phase with the same order of sample complexity $n=\Omega{(d^3\log{p})}$ as that of $\ell_1$-regularized logistic regression ($\ell_1$-LogR). This result is consistent with the conjecture in Meng, Obuchi, and Kabashima 2021 using the non-rigorous replica method from statistical physics and thus complements it with a rigorous proof. For general tree-like graphs, it is demonstrated that the same result as RR graphs can be obtained under mild assumptions of the dependency condition and incoherence condition. Moreover, we provide a rigorous proof of the model selection consistency of Lasso with post-thresholding for general tree-like graphs in the paramagnetic phase without further assumptions on the dependency and incoherence conditions. Experimental results agree well with our theoretical analysis.} }
Endnote
%0 Conference Paper %T On Model Selection Consistency of Lasso for High-Dimensional Ising Models %A Xiangming Meng %A Tomoyuki Obuchi %A Yoshiyuki Kabashima %B Proceedings of The 26th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2023 %E Francisco Ruiz %E Jennifer Dy %E Jan-Willem van de Meent %F pmlr-v206-meng23a %I PMLR %P 6783--6805 %U https://proceedings.mlr.press/v206/meng23a.html %V 206 %X We theoretically analyze the model selection consistency of least absolute shrinkage and selection operator (Lasso), both with and without post-thresholding, for high-dimensional Ising models. For random regular (RR) graphs of size $p$ with regular node degree $d$ and uniform couplings $\theta_0$, it is rigorously proved that Lasso without post-thresholding is model selection consistent in the whole paramagnetic phase with the same order of sample complexity $n=\Omega{(d^3\log{p})}$ as that of $\ell_1$-regularized logistic regression ($\ell_1$-LogR). This result is consistent with the conjecture in Meng, Obuchi, and Kabashima 2021 using the non-rigorous replica method from statistical physics and thus complements it with a rigorous proof. For general tree-like graphs, it is demonstrated that the same result as RR graphs can be obtained under mild assumptions of the dependency condition and incoherence condition. Moreover, we provide a rigorous proof of the model selection consistency of Lasso with post-thresholding for general tree-like graphs in the paramagnetic phase without further assumptions on the dependency and incoherence conditions. Experimental results agree well with our theoretical analysis.
APA
Meng, X., Obuchi, T. & Kabashima, Y.. (2023). On Model Selection Consistency of Lasso for High-Dimensional Ising Models. Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 206:6783-6805 Available from https://proceedings.mlr.press/v206/meng23a.html.

Related Material