[edit]
Generalized PTR: User-Friendly Recipes for Data-Adaptive Algorithms with Differential Privacy
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:3977-4005, 2023.
Abstract
The “Propose-Test-Release” (PTR) framework [Dwork and Lei, 2009] is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is “nice”. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from “Private Aggregation of Teacher Ensembles (PATE)” [Papernot et al., 2017, 2018] - privately releasing the entire model with a delicate data-dependent analysis.