Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables

Mengdi Xu, Peide Huang, Yaru Niu, Visak Kumar, Jielin Qiu, Chao Fang, Kuan-Hui Lee, Xuewei Qi, Henry Lam, Bo Li, Ding Zhao
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:2677-2703, 2023.

Abstract

One key challenge for multi-task Reinforcement learning (RL) in practice is the absence of task specifications. Robust RL has been applied to deal with task ambiguity but may result in over-conservative policies. To balance the worst-case (robustness) and average performance, we propose Group Distributionally Robust Markov Decision Process (GDR-MDP), a flexible hierarchical MDP formulation that encodes task groups via a latent mixture model. GDR-MDP identifies the optimal policy that maximizes the expected return under the worst-possible qualified belief over task groups within an ambiguity set. We rigorously show that GDR-MDP’s hierarchical structure improves distributional robustness by adding regularization to the worst possible outcomes. We then develop deep RL algorithms for GDR-MDP for both value-based and policy-based RL methods. Extensive experiments on Box2D control tasks, MuJoCo benchmarks, and Google football platforms show that our algorithms outperform classic robust training algorithms across diverse environments in terms of robustness under belief uncertainties. Demos are available on our project page (https://sites.google.com/view/gdr-rl/home).

Cite this Paper


BibTeX
@InProceedings{pmlr-v206-xu23d, title = {Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables}, author = {Xu, Mengdi and Huang, Peide and Niu, Yaru and Kumar, Visak and Qiu, Jielin and Fang, Chao and Lee, Kuan-Hui and Qi, Xuewei and Lam, Henry and Li, Bo and Zhao, Ding}, booktitle = {Proceedings of The 26th International Conference on Artificial Intelligence and Statistics}, pages = {2677--2703}, year = {2023}, editor = {Ruiz, Francisco and Dy, Jennifer and van de Meent, Jan-Willem}, volume = {206}, series = {Proceedings of Machine Learning Research}, month = {25--27 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v206/xu23d/xu23d.pdf}, url = {https://proceedings.mlr.press/v206/xu23d.html}, abstract = {One key challenge for multi-task Reinforcement learning (RL) in practice is the absence of task specifications. Robust RL has been applied to deal with task ambiguity but may result in over-conservative policies. To balance the worst-case (robustness) and average performance, we propose Group Distributionally Robust Markov Decision Process (GDR-MDP), a flexible hierarchical MDP formulation that encodes task groups via a latent mixture model. GDR-MDP identifies the optimal policy that maximizes the expected return under the worst-possible qualified belief over task groups within an ambiguity set. We rigorously show that GDR-MDP’s hierarchical structure improves distributional robustness by adding regularization to the worst possible outcomes. We then develop deep RL algorithms for GDR-MDP for both value-based and policy-based RL methods. Extensive experiments on Box2D control tasks, MuJoCo benchmarks, and Google football platforms show that our algorithms outperform classic robust training algorithms across diverse environments in terms of robustness under belief uncertainties. Demos are available on our project page (https://sites.google.com/view/gdr-rl/home).} }
Endnote
%0 Conference Paper %T Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables %A Mengdi Xu %A Peide Huang %A Yaru Niu %A Visak Kumar %A Jielin Qiu %A Chao Fang %A Kuan-Hui Lee %A Xuewei Qi %A Henry Lam %A Bo Li %A Ding Zhao %B Proceedings of The 26th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2023 %E Francisco Ruiz %E Jennifer Dy %E Jan-Willem van de Meent %F pmlr-v206-xu23d %I PMLR %P 2677--2703 %U https://proceedings.mlr.press/v206/xu23d.html %V 206 %X One key challenge for multi-task Reinforcement learning (RL) in practice is the absence of task specifications. Robust RL has been applied to deal with task ambiguity but may result in over-conservative policies. To balance the worst-case (robustness) and average performance, we propose Group Distributionally Robust Markov Decision Process (GDR-MDP), a flexible hierarchical MDP formulation that encodes task groups via a latent mixture model. GDR-MDP identifies the optimal policy that maximizes the expected return under the worst-possible qualified belief over task groups within an ambiguity set. We rigorously show that GDR-MDP’s hierarchical structure improves distributional robustness by adding regularization to the worst possible outcomes. We then develop deep RL algorithms for GDR-MDP for both value-based and policy-based RL methods. Extensive experiments on Box2D control tasks, MuJoCo benchmarks, and Google football platforms show that our algorithms outperform classic robust training algorithms across diverse environments in terms of robustness under belief uncertainties. Demos are available on our project page (https://sites.google.com/view/gdr-rl/home).
APA
Xu, M., Huang, P., Niu, Y., Kumar, V., Qiu, J., Fang, C., Lee, K., Qi, X., Lam, H., Li, B. & Zhao, D.. (2023). Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables. Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 206:2677-2703 Available from https://proceedings.mlr.press/v206/xu23d.html.

Related Material