Improved Sample Complexity Bounds for Distributionally Robust Reinforcement Learning

Zaiyan Xu, Kishan Panaganti, Dileep Kalathil
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:9728-9754, 2023.

Abstract

We consider the problem of learning a control policy that is robust against the parameter mismatches between the training environment and testing environment. We formulate this as a distributionally robust reinforcement learning (DR-RL) problem where the objective is to learn the policy which maximizes the value function against the worst possible stochastic model of the environment in an uncertainty set. We focus on the tabular episodic learning setting where the algorithm has access to a generative model of the nominal (training) environment around which the uncertainty set is defined. We propose the Robust Phased Value Learning (RPVL) algorithm to solve this problem for the uncertainty sets specified by four different divergences: total variation, chi-square, Kullback-Leibler, and Wasserstein. We show that our algorithm achieves $\tilde{\mathcal{O}}(|\mathcal{S}||\mathcal{A}| H^{5})$ sample complexity, which is uniformly better than the existing results by a factor of $|\mathcal{S}|$, where $|\mathcal{S}|$ is number of states, $|\mathcal{A}|$ is the number of actions, and $H$ is the horizon length. We also provide the first-ever sample complexity result for the Wasserstein uncertainty set. Finally, we demonstrate the performance of our algorithm using simulation experiments.

Cite this Paper


BibTeX
@InProceedings{pmlr-v206-xu23h, title = {Improved Sample Complexity Bounds for Distributionally Robust Reinforcement Learning}, author = {Xu, Zaiyan and Panaganti, Kishan and Kalathil, Dileep}, booktitle = {Proceedings of The 26th International Conference on Artificial Intelligence and Statistics}, pages = {9728--9754}, year = {2023}, editor = {Ruiz, Francisco and Dy, Jennifer and van de Meent, Jan-Willem}, volume = {206}, series = {Proceedings of Machine Learning Research}, month = {25--27 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v206/xu23h/xu23h.pdf}, url = {https://proceedings.mlr.press/v206/xu23h.html}, abstract = {We consider the problem of learning a control policy that is robust against the parameter mismatches between the training environment and testing environment. We formulate this as a distributionally robust reinforcement learning (DR-RL) problem where the objective is to learn the policy which maximizes the value function against the worst possible stochastic model of the environment in an uncertainty set. We focus on the tabular episodic learning setting where the algorithm has access to a generative model of the nominal (training) environment around which the uncertainty set is defined. We propose the Robust Phased Value Learning (RPVL) algorithm to solve this problem for the uncertainty sets specified by four different divergences: total variation, chi-square, Kullback-Leibler, and Wasserstein. We show that our algorithm achieves $\tilde{\mathcal{O}}(|\mathcal{S}||\mathcal{A}| H^{5})$ sample complexity, which is uniformly better than the existing results by a factor of $|\mathcal{S}|$, where $|\mathcal{S}|$ is number of states, $|\mathcal{A}|$ is the number of actions, and $H$ is the horizon length. We also provide the first-ever sample complexity result for the Wasserstein uncertainty set. Finally, we demonstrate the performance of our algorithm using simulation experiments.} }
Endnote
%0 Conference Paper %T Improved Sample Complexity Bounds for Distributionally Robust Reinforcement Learning %A Zaiyan Xu %A Kishan Panaganti %A Dileep Kalathil %B Proceedings of The 26th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2023 %E Francisco Ruiz %E Jennifer Dy %E Jan-Willem van de Meent %F pmlr-v206-xu23h %I PMLR %P 9728--9754 %U https://proceedings.mlr.press/v206/xu23h.html %V 206 %X We consider the problem of learning a control policy that is robust against the parameter mismatches between the training environment and testing environment. We formulate this as a distributionally robust reinforcement learning (DR-RL) problem where the objective is to learn the policy which maximizes the value function against the worst possible stochastic model of the environment in an uncertainty set. We focus on the tabular episodic learning setting where the algorithm has access to a generative model of the nominal (training) environment around which the uncertainty set is defined. We propose the Robust Phased Value Learning (RPVL) algorithm to solve this problem for the uncertainty sets specified by four different divergences: total variation, chi-square, Kullback-Leibler, and Wasserstein. We show that our algorithm achieves $\tilde{\mathcal{O}}(|\mathcal{S}||\mathcal{A}| H^{5})$ sample complexity, which is uniformly better than the existing results by a factor of $|\mathcal{S}|$, where $|\mathcal{S}|$ is number of states, $|\mathcal{A}|$ is the number of actions, and $H$ is the horizon length. We also provide the first-ever sample complexity result for the Wasserstein uncertainty set. Finally, we demonstrate the performance of our algorithm using simulation experiments.
APA
Xu, Z., Panaganti, K. & Kalathil, D.. (2023). Improved Sample Complexity Bounds for Distributionally Robust Reinforcement Learning. Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 206:9728-9754 Available from https://proceedings.mlr.press/v206/xu23h.html.

Related Material