Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling

Romain Lopez, Natasa Tagasovska, Stephen Ra, Kyunghyun Cho, Jonathan Pritchard, Aviv Regev
Proceedings of the Second Conference on Causal Learning and Reasoning, PMLR 213:662-691, 2023.

Abstract

Latent variable models such as the Variational Auto-Encoder (VAE) have become a go-to tool for analyzing biological data, especially in the field of single-cell genomics. One remaining challenge is the interpretability of latent variables as biological processes that define a cell’s identity. Outside of biological applications, this problem is commonly referred to as learning disentangled representations. Although several disentanglement-promoting variants of the VAE were introduced, and applied to single-cell genomics data, this task has been shown to be infeasible from independent and identically distributed measurements, without additional structure. Instead, recent methods propose to leverage non-stationary data, as well as the sparse mechanism shift assumption in order to learn disentangled representations with a causal semantic. Here, we extend the application of these methodological advances to the analysis of single-cell genomics data with genetic or chemical perturbations. More precisely, we propose a deep generative model of single-cell gene expression data for which each perturbation is treated as a stochastic intervention targeting an unknown, but sparse, subset of latent variables. We benchmark these methods on simulated single-cell data to evaluate their performance at latent units recovery, causal target identification and out-of-domain generalization. Finally, we apply those approaches to two real-world large-scale gene perturbation data sets and find that models that exploit the sparse mechanism shift hypothesis surpass contemporary methods on a transfer learning task. We implement our new model and benchmarks using the scvi-tools library, and release it as open-source software at \url{https://github.com/Genentech/sVAE}.

Cite this Paper


BibTeX
@InProceedings{pmlr-v213-lopez23a, title = {Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling}, author = {Lopez, Romain and Tagasovska, Natasa and Ra, Stephen and Cho, Kyunghyun and Pritchard, Jonathan and Regev, Aviv}, booktitle = {Proceedings of the Second Conference on Causal Learning and Reasoning}, pages = {662--691}, year = {2023}, editor = {van der Schaar, Mihaela and Zhang, Cheng and Janzing, Dominik}, volume = {213}, series = {Proceedings of Machine Learning Research}, month = {11--14 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v213/lopez23a/lopez23a.pdf}, url = {https://proceedings.mlr.press/v213/lopez23a.html}, abstract = {Latent variable models such as the Variational Auto-Encoder (VAE) have become a go-to tool for analyzing biological data, especially in the field of single-cell genomics. One remaining challenge is the interpretability of latent variables as biological processes that define a cell’s identity. Outside of biological applications, this problem is commonly referred to as learning disentangled representations. Although several disentanglement-promoting variants of the VAE were introduced, and applied to single-cell genomics data, this task has been shown to be infeasible from independent and identically distributed measurements, without additional structure. Instead, recent methods propose to leverage non-stationary data, as well as the sparse mechanism shift assumption in order to learn disentangled representations with a causal semantic. Here, we extend the application of these methodological advances to the analysis of single-cell genomics data with genetic or chemical perturbations. More precisely, we propose a deep generative model of single-cell gene expression data for which each perturbation is treated as a stochastic intervention targeting an unknown, but sparse, subset of latent variables. We benchmark these methods on simulated single-cell data to evaluate their performance at latent units recovery, causal target identification and out-of-domain generalization. Finally, we apply those approaches to two real-world large-scale gene perturbation data sets and find that models that exploit the sparse mechanism shift hypothesis surpass contemporary methods on a transfer learning task. We implement our new model and benchmarks using the scvi-tools library, and release it as open-source software at \url{https://github.com/Genentech/sVAE}.} }
Endnote
%0 Conference Paper %T Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling %A Romain Lopez %A Natasa Tagasovska %A Stephen Ra %A Kyunghyun Cho %A Jonathan Pritchard %A Aviv Regev %B Proceedings of the Second Conference on Causal Learning and Reasoning %C Proceedings of Machine Learning Research %D 2023 %E Mihaela van der Schaar %E Cheng Zhang %E Dominik Janzing %F pmlr-v213-lopez23a %I PMLR %P 662--691 %U https://proceedings.mlr.press/v213/lopez23a.html %V 213 %X Latent variable models such as the Variational Auto-Encoder (VAE) have become a go-to tool for analyzing biological data, especially in the field of single-cell genomics. One remaining challenge is the interpretability of latent variables as biological processes that define a cell’s identity. Outside of biological applications, this problem is commonly referred to as learning disentangled representations. Although several disentanglement-promoting variants of the VAE were introduced, and applied to single-cell genomics data, this task has been shown to be infeasible from independent and identically distributed measurements, without additional structure. Instead, recent methods propose to leverage non-stationary data, as well as the sparse mechanism shift assumption in order to learn disentangled representations with a causal semantic. Here, we extend the application of these methodological advances to the analysis of single-cell genomics data with genetic or chemical perturbations. More precisely, we propose a deep generative model of single-cell gene expression data for which each perturbation is treated as a stochastic intervention targeting an unknown, but sparse, subset of latent variables. We benchmark these methods on simulated single-cell data to evaluate their performance at latent units recovery, causal target identification and out-of-domain generalization. Finally, we apply those approaches to two real-world large-scale gene perturbation data sets and find that models that exploit the sparse mechanism shift hypothesis surpass contemporary methods on a transfer learning task. We implement our new model and benchmarks using the scvi-tools library, and release it as open-source software at \url{https://github.com/Genentech/sVAE}.
APA
Lopez, R., Tagasovska, N., Ra, S., Cho, K., Pritchard, J. & Regev, A.. (2023). Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling. Proceedings of the Second Conference on Causal Learning and Reasoning, in Proceedings of Machine Learning Research 213:662-691 Available from https://proceedings.mlr.press/v213/lopez23a.html.

Related Material