Assessing the Impact of Context Inference Error and Partial Observability on RL Methods for Just-In-Time Adaptive Interventions

Karine Karine, Predrag Klasnja, Susan A. Murphy, Benjamin M. Marlin
Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, PMLR 216:1047-1057, 2023.

Abstract

Just-in-Time Adaptive Interventions (JITAIs) are a class of personalized health interventions developed within the behavioral science community. JITAIs aim to provide the right type and amount of support by iteratively selecting a sequence of intervention options from a pre-defined set of components in response to each individual’s time varying state. In this work, we explore the application of reinforcement learning methods to the problem of learning intervention option selection policies. We study the effect of context inference error and partial observability on the ability to learn effective policies. Our results show that the propagation of uncertainty from context inferences is critical to improving intervention efficacy as context uncertainty increases, while policy gradient algorithms can provide remarkable robustness to partially observed behavioral state information.

Cite this Paper


BibTeX
@InProceedings{pmlr-v216-karine23a, title = {Assessing the Impact of Context Inference Error and Partial Observability on {RL} Methods for Just-In-Time Adaptive Interventions}, author = {Karine, Karine and Klasnja, Predrag and Murphy, Susan A. and Marlin, Benjamin M.}, booktitle = {Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence}, pages = {1047--1057}, year = {2023}, editor = {Evans, Robin J. and Shpitser, Ilya}, volume = {216}, series = {Proceedings of Machine Learning Research}, month = {31 Jul--04 Aug}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v216/karine23a/karine23a.pdf}, url = {https://proceedings.mlr.press/v216/karine23a.html}, abstract = {Just-in-Time Adaptive Interventions (JITAIs) are a class of personalized health interventions developed within the behavioral science community. JITAIs aim to provide the right type and amount of support by iteratively selecting a sequence of intervention options from a pre-defined set of components in response to each individual’s time varying state. In this work, we explore the application of reinforcement learning methods to the problem of learning intervention option selection policies. We study the effect of context inference error and partial observability on the ability to learn effective policies. Our results show that the propagation of uncertainty from context inferences is critical to improving intervention efficacy as context uncertainty increases, while policy gradient algorithms can provide remarkable robustness to partially observed behavioral state information.} }
Endnote
%0 Conference Paper %T Assessing the Impact of Context Inference Error and Partial Observability on RL Methods for Just-In-Time Adaptive Interventions %A Karine Karine %A Predrag Klasnja %A Susan A. Murphy %A Benjamin M. Marlin %B Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2023 %E Robin J. Evans %E Ilya Shpitser %F pmlr-v216-karine23a %I PMLR %P 1047--1057 %U https://proceedings.mlr.press/v216/karine23a.html %V 216 %X Just-in-Time Adaptive Interventions (JITAIs) are a class of personalized health interventions developed within the behavioral science community. JITAIs aim to provide the right type and amount of support by iteratively selecting a sequence of intervention options from a pre-defined set of components in response to each individual’s time varying state. In this work, we explore the application of reinforcement learning methods to the problem of learning intervention option selection policies. We study the effect of context inference error and partial observability on the ability to learn effective policies. Our results show that the propagation of uncertainty from context inferences is critical to improving intervention efficacy as context uncertainty increases, while policy gradient algorithms can provide remarkable robustness to partially observed behavioral state information.
APA
Karine, K., Klasnja, P., Murphy, S.A. & Marlin, B.M.. (2023). Assessing the Impact of Context Inference Error and Partial Observability on RL Methods for Just-In-Time Adaptive Interventions. Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 216:1047-1057 Available from https://proceedings.mlr.press/v216/karine23a.html.

Related Material