Exact Count of Boundary Pieces of ReLU Classifiers: Towards the Proper Complexity Measure for Classification

Paweł Piwek, Adam Klukowski, Tianyang Hu
Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, PMLR 216:1673-1683, 2023.

Abstract

Classic learning theory suggests that proper regularization is the key to good generalization and robustness. In classification, current training schemes only target the complexity of the classifier itself, which can be misleading and ineffective. Instead, we advocate directly measuring the complexity of the decision boundary. Existing literature is limited in this area with few well-established definitions of boundary complexity. As a proof of concept, we start by analyzing ReLU neural networks, whose boundary complexity can be conveniently characterized by the number of affine pieces. With the help of tropical geometry, we develop a novel method that can explicitly count the exact number of boundary pieces, and as a by-product, the exact number of total affine pieces. Numerical experiments are conducted and distinctive properties of our boundary complexity are uncovered. First, the boundary piece count appears largely independent of other measures, e.g., total piece count, and $l_2$ norm of weights, during the training process. Second, the boundary piece count is negatively correlated with robustness, where popular robust training techniques, e.g., adversarial training or random noise injection, are found to reduce the number of boundary pieces.

Cite this Paper


BibTeX
@InProceedings{pmlr-v216-piwek23a, title = {Exact Count of Boundary Pieces of {ReLU} Classifiers: Towards the Proper Complexity Measure for Classification}, author = {Piwek, Pawe\l and Klukowski, Adam and Hu, Tianyang}, booktitle = {Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence}, pages = {1673--1683}, year = {2023}, editor = {Evans, Robin J. and Shpitser, Ilya}, volume = {216}, series = {Proceedings of Machine Learning Research}, month = {31 Jul--04 Aug}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v216/piwek23a/piwek23a.pdf}, url = {https://proceedings.mlr.press/v216/piwek23a.html}, abstract = {Classic learning theory suggests that proper regularization is the key to good generalization and robustness. In classification, current training schemes only target the complexity of the classifier itself, which can be misleading and ineffective. Instead, we advocate directly measuring the complexity of the decision boundary. Existing literature is limited in this area with few well-established definitions of boundary complexity. As a proof of concept, we start by analyzing ReLU neural networks, whose boundary complexity can be conveniently characterized by the number of affine pieces. With the help of tropical geometry, we develop a novel method that can explicitly count the exact number of boundary pieces, and as a by-product, the exact number of total affine pieces. Numerical experiments are conducted and distinctive properties of our boundary complexity are uncovered. First, the boundary piece count appears largely independent of other measures, e.g., total piece count, and $l_2$ norm of weights, during the training process. Second, the boundary piece count is negatively correlated with robustness, where popular robust training techniques, e.g., adversarial training or random noise injection, are found to reduce the number of boundary pieces.} }
Endnote
%0 Conference Paper %T Exact Count of Boundary Pieces of ReLU Classifiers: Towards the Proper Complexity Measure for Classification %A Paweł Piwek %A Adam Klukowski %A Tianyang Hu %B Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2023 %E Robin J. Evans %E Ilya Shpitser %F pmlr-v216-piwek23a %I PMLR %P 1673--1683 %U https://proceedings.mlr.press/v216/piwek23a.html %V 216 %X Classic learning theory suggests that proper regularization is the key to good generalization and robustness. In classification, current training schemes only target the complexity of the classifier itself, which can be misleading and ineffective. Instead, we advocate directly measuring the complexity of the decision boundary. Existing literature is limited in this area with few well-established definitions of boundary complexity. As a proof of concept, we start by analyzing ReLU neural networks, whose boundary complexity can be conveniently characterized by the number of affine pieces. With the help of tropical geometry, we develop a novel method that can explicitly count the exact number of boundary pieces, and as a by-product, the exact number of total affine pieces. Numerical experiments are conducted and distinctive properties of our boundary complexity are uncovered. First, the boundary piece count appears largely independent of other measures, e.g., total piece count, and $l_2$ norm of weights, during the training process. Second, the boundary piece count is negatively correlated with robustness, where popular robust training techniques, e.g., adversarial training or random noise injection, are found to reduce the number of boundary pieces.
APA
Piwek, P., Klukowski, A. & Hu, T.. (2023). Exact Count of Boundary Pieces of ReLU Classifiers: Towards the Proper Complexity Measure for Classification. Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 216:1673-1683 Available from https://proceedings.mlr.press/v216/piwek23a.html.

Related Material