Low-rank matrix recovery with unknown correspondence

Zhiwei Tang, Tsung-Hui Chang, Xiaojing Ye, Hongyuan Zha
Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, PMLR 216:2111-2122, 2023.

Abstract

We study a matrix recovery problem with unknown correspondence: given the observation matrix $M_o=[A,\tilde P B]$, where $\tilde P$ is an unknown permutation matrix, we aim to recover the underlying matrix $M=[A,B]$. Such problem commonly arises in many applications where heterogeneous data are utilized and the correspondence among them are unknown, e.g., due to data mishandling or privacy concern. We show that, in some applications, it is possible to recover $M$ via solving a nuclear norm minimization problem. Moreover, under a proper low-rank condition on $M$, we derive a non-asymptotic error bound for the recovery of $M$. We propose an algorithm, $\text{M}^3\text{O}$ (Matrix recovery via Min-Max Optimization) which recasts this combinatorial problem as a continuous minimax optimization problem and solves it by proximal gradient with a Max-Oracle. $\text{M}^3\text{O}$ can also be applied to a more general scenario where we have missing entries in $M_o$ and multiple groups of data with distinct unknown correspondence. Experiments on simulated data, the MovieLens 100K dataset and Yale B database show that $\text{M}^3\text{O}$ achieves state-of-the-art performance over several baselines and can recover the ground-truth correspondence with high accuracy.

Cite this Paper


BibTeX
@InProceedings{pmlr-v216-tang23a, title = {Low-rank matrix recovery with unknown correspondence}, author = {Tang, Zhiwei and Chang, Tsung-Hui and Ye, Xiaojing and Zha, Hongyuan}, booktitle = {Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence}, pages = {2111--2122}, year = {2023}, editor = {Evans, Robin J. and Shpitser, Ilya}, volume = {216}, series = {Proceedings of Machine Learning Research}, month = {31 Jul--04 Aug}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v216/tang23a/tang23a.pdf}, url = {https://proceedings.mlr.press/v216/tang23a.html}, abstract = {We study a matrix recovery problem with unknown correspondence: given the observation matrix $M_o=[A,\tilde P B]$, where $\tilde P$ is an unknown permutation matrix, we aim to recover the underlying matrix $M=[A,B]$. Such problem commonly arises in many applications where heterogeneous data are utilized and the correspondence among them are unknown, e.g., due to data mishandling or privacy concern. We show that, in some applications, it is possible to recover $M$ via solving a nuclear norm minimization problem. Moreover, under a proper low-rank condition on $M$, we derive a non-asymptotic error bound for the recovery of $M$. We propose an algorithm, $\text{M}^3\text{O}$ (Matrix recovery via Min-Max Optimization) which recasts this combinatorial problem as a continuous minimax optimization problem and solves it by proximal gradient with a Max-Oracle. $\text{M}^3\text{O}$ can also be applied to a more general scenario where we have missing entries in $M_o$ and multiple groups of data with distinct unknown correspondence. Experiments on simulated data, the MovieLens 100K dataset and Yale B database show that $\text{M}^3\text{O}$ achieves state-of-the-art performance over several baselines and can recover the ground-truth correspondence with high accuracy.} }
Endnote
%0 Conference Paper %T Low-rank matrix recovery with unknown correspondence %A Zhiwei Tang %A Tsung-Hui Chang %A Xiaojing Ye %A Hongyuan Zha %B Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2023 %E Robin J. Evans %E Ilya Shpitser %F pmlr-v216-tang23a %I PMLR %P 2111--2122 %U https://proceedings.mlr.press/v216/tang23a.html %V 216 %X We study a matrix recovery problem with unknown correspondence: given the observation matrix $M_o=[A,\tilde P B]$, where $\tilde P$ is an unknown permutation matrix, we aim to recover the underlying matrix $M=[A,B]$. Such problem commonly arises in many applications where heterogeneous data are utilized and the correspondence among them are unknown, e.g., due to data mishandling or privacy concern. We show that, in some applications, it is possible to recover $M$ via solving a nuclear norm minimization problem. Moreover, under a proper low-rank condition on $M$, we derive a non-asymptotic error bound for the recovery of $M$. We propose an algorithm, $\text{M}^3\text{O}$ (Matrix recovery via Min-Max Optimization) which recasts this combinatorial problem as a continuous minimax optimization problem and solves it by proximal gradient with a Max-Oracle. $\text{M}^3\text{O}$ can also be applied to a more general scenario where we have missing entries in $M_o$ and multiple groups of data with distinct unknown correspondence. Experiments on simulated data, the MovieLens 100K dataset and Yale B database show that $\text{M}^3\text{O}$ achieves state-of-the-art performance over several baselines and can recover the ground-truth correspondence with high accuracy.
APA
Tang, Z., Chang, T., Ye, X. & Zha, H.. (2023). Low-rank matrix recovery with unknown correspondence. Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 216:2111-2122 Available from https://proceedings.mlr.press/v216/tang23a.html.

Related Material