CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary Time Series Data

Muhammad Hasan Ferdous, Uzma Hasan, Md Osman Gani
Proceedings of the 8th Machine Learning for Healthcare Conference, PMLR 219:186-207, 2023.

Abstract

Time series data are found in many areas of healthcare such as medical time series, electronic health records (EHR), measurements of vitals, and wearable devices. Causal discovery, which involves estimating causal relationships from observational data, holds the potential to play a significant role in extracting actionable insights about human health. In this study, we present a novel constraint-based causal discovery approach for autocorrelated and non-stationary time series data (CDANs). Our proposed method addresses several limitations of existing causal discovery methods for autocorrelated and non-stationary time series data, such as high dimensionality, the inability to identify lagged causal relationships and overlooking changing modules. Our approach identifies lagged and instantaneous/contemporaneous causal relationships along with changing modules that vary over time. The method optimizes the conditioning sets in a constraint-based search by considering lagged parents instead of conditioning on the entire past that addresses high dimensionality. The changing modules are detected by considering both contemporaneous and lagged parents. The approach first detects the lagged adjacencies, then identifies the changing modules and contemporaneous adjacencies, and finally determines the causal direction. We extensively evaluated our proposed method on synthetic and real-world clinical datasets, and compared its performance with several baseline approaches. The experimental results demonstrate the effectiveness of the proposed method in detecting causal relationships and changing modules for autocorrelated and non-stationary time series data.

Cite this Paper


BibTeX
@InProceedings{pmlr-v219-ferdous23a, title = {CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary Time Series Data}, author = {Ferdous, Muhammad Hasan and Hasan, Uzma and Gani, Md Osman}, booktitle = {Proceedings of the 8th Machine Learning for Healthcare Conference}, pages = {186--207}, year = {2023}, editor = {Deshpande, Kaivalya and Fiterau, Madalina and Joshi, Shalmali and Lipton, Zachary and Ranganath, Rajesh and Urteaga, Iñigo and Yeung, Serene}, volume = {219}, series = {Proceedings of Machine Learning Research}, month = {11--12 Aug}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v219/ferdous23a/ferdous23a.pdf}, url = {https://proceedings.mlr.press/v219/ferdous23a.html}, abstract = {Time series data are found in many areas of healthcare such as medical time series, electronic health records (EHR), measurements of vitals, and wearable devices. Causal discovery, which involves estimating causal relationships from observational data, holds the potential to play a significant role in extracting actionable insights about human health. In this study, we present a novel constraint-based causal discovery approach for autocorrelated and non-stationary time series data (CDANs). Our proposed method addresses several limitations of existing causal discovery methods for autocorrelated and non-stationary time series data, such as high dimensionality, the inability to identify lagged causal relationships and overlooking changing modules. Our approach identifies lagged and instantaneous/contemporaneous causal relationships along with changing modules that vary over time. The method optimizes the conditioning sets in a constraint-based search by considering lagged parents instead of conditioning on the entire past that addresses high dimensionality. The changing modules are detected by considering both contemporaneous and lagged parents. The approach first detects the lagged adjacencies, then identifies the changing modules and contemporaneous adjacencies, and finally determines the causal direction. We extensively evaluated our proposed method on synthetic and real-world clinical datasets, and compared its performance with several baseline approaches. The experimental results demonstrate the effectiveness of the proposed method in detecting causal relationships and changing modules for autocorrelated and non-stationary time series data.} }
Endnote
%0 Conference Paper %T CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary Time Series Data %A Muhammad Hasan Ferdous %A Uzma Hasan %A Md Osman Gani %B Proceedings of the 8th Machine Learning for Healthcare Conference %C Proceedings of Machine Learning Research %D 2023 %E Kaivalya Deshpande %E Madalina Fiterau %E Shalmali Joshi %E Zachary Lipton %E Rajesh Ranganath %E Iñigo Urteaga %E Serene Yeung %F pmlr-v219-ferdous23a %I PMLR %P 186--207 %U https://proceedings.mlr.press/v219/ferdous23a.html %V 219 %X Time series data are found in many areas of healthcare such as medical time series, electronic health records (EHR), measurements of vitals, and wearable devices. Causal discovery, which involves estimating causal relationships from observational data, holds the potential to play a significant role in extracting actionable insights about human health. In this study, we present a novel constraint-based causal discovery approach for autocorrelated and non-stationary time series data (CDANs). Our proposed method addresses several limitations of existing causal discovery methods for autocorrelated and non-stationary time series data, such as high dimensionality, the inability to identify lagged causal relationships and overlooking changing modules. Our approach identifies lagged and instantaneous/contemporaneous causal relationships along with changing modules that vary over time. The method optimizes the conditioning sets in a constraint-based search by considering lagged parents instead of conditioning on the entire past that addresses high dimensionality. The changing modules are detected by considering both contemporaneous and lagged parents. The approach first detects the lagged adjacencies, then identifies the changing modules and contemporaneous adjacencies, and finally determines the causal direction. We extensively evaluated our proposed method on synthetic and real-world clinical datasets, and compared its performance with several baseline approaches. The experimental results demonstrate the effectiveness of the proposed method in detecting causal relationships and changing modules for autocorrelated and non-stationary time series data.
APA
Ferdous, M.H., Hasan, U. & Gani, M.O.. (2023). CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary Time Series Data. Proceedings of the 8th Machine Learning for Healthcare Conference, in Proceedings of Machine Learning Research 219:186-207 Available from https://proceedings.mlr.press/v219/ferdous23a.html.

Related Material