[edit]
Uncovering the Varied Impact of Behavioral Change Messages on Population Groups
Proceedings of the 8th Machine Learning for Healthcare Conference, PMLR 219:906-922, 2023.
Abstract
Individuals such as medical interns who work in high-stress environments often face mental health challenges including depression and anxiety. These challenges are exacerbated by the limited access to traditional mental health services due to demanding work schedules. In this context, mobile health interventions such as push notifications targeting behavioral modification to improve mental health outcomes could deliver much needed support. In this work, we study the effectiveness of these interventions on subgroups, by studying the conditional average causal effect of these interventions. We design a two step approach for estimating the conditional average causal effect of interventions and identifying specific subgroups of the population who respond positively or negatively to the interventions. The first step of our approach follows existing causal effect estimation approaches, while the second step involves a novel tree-based approach to identify subgroups who respond to the treatment. The novelty in the second step stems from a pruning approach that deploys hypothesis testing to identify subgroups experiencing a statistically significant positive or negative causal effect. Using a semi-simulated dataset, we show that our approach retrieves affected subpopulations with a higher precision than alternatives while maintaining the same recall and accuracy. Using a real dataset with randomized push interventions among the medical intern population at a large hospital, we show how our approach can be used to identify subgroups who might benefit the most from interventions.