Activation From Sparse 2D Cardiac MRIs

Nivetha Jayakumar, Jiarui Xing, Tonmoy Hossain, Fred Epstein, Kenneth Bilchick, Miaomiao Zhang
Proceedings of the 3rd Machine Learning for Health Symposium, PMLR 225:190-200, 2023.

Abstract

Identifying regions of late mechanical activation (LMA) of the left ventricular (LV) myocardium is critical in determining the optimal pacing site for cardiac resynchronization therapy in patients with heart failure. Several deep learning-based approaches have been developed to predict 3D LMA maps of LV myocardium from a stack of sparse 2D cardiac magnetic resonance imaging (MRIs). However, these models often loosely consider the geometric shape structure of the myocardium. This makes the reconstructed activation maps suboptimal; hence leading to a reduced accuracy of predicting the late activating regions of hearts. In this paper, we propose to use shape-constrained diffusion models to better reconstruct a 3D LMA map, given a limited number of 2D cardiac MRI slices. In contrast to previous methods that primarily rely on spatial correlations of image intensities for 3D reconstruction, our model leverages object shape as priors learned from the training data to guide the reconstruction process. To achieve this, we develop a joint learning network that simultaneously learns a mean shape under deformation models. Each reconstructed image is then considered as a deformed variant of the mean shape. To validate the performance of our model, we train and test the proposed framework on a publicly available mesh dataset of 3D myocardium and compare it with state-of-the-art deep learning-based reconstruction models. Experimental results show that our model achieves superior performance in reconstructing the 3D LMA maps as compared to the state-of-the-art models.

Cite this Paper


BibTeX
@InProceedings{pmlr-v225-jayakumar23a, title = {Activation From Sparse 2D Cardiac MRIs}, author = {Jayakumar, Nivetha and Xing, Jiarui and Hossain, Tonmoy and Epstein, Fred and Bilchick, Kenneth and Zhang, Miaomiao}, booktitle = {Proceedings of the 3rd Machine Learning for Health Symposium}, pages = {190--200}, year = {2023}, editor = {Hegselmann, Stefan and Parziale, Antonio and Shanmugam, Divya and Tang, Shengpu and Asiedu, Mercy Nyamewaa and Chang, Serina and Hartvigsen, Tom and Singh, Harvineet}, volume = {225}, series = {Proceedings of Machine Learning Research}, month = {10 Dec}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v225/jayakumar23a/jayakumar23a.pdf}, url = {https://proceedings.mlr.press/v225/jayakumar23a.html}, abstract = {Identifying regions of late mechanical activation (LMA) of the left ventricular (LV) myocardium is critical in determining the optimal pacing site for cardiac resynchronization therapy in patients with heart failure. Several deep learning-based approaches have been developed to predict 3D LMA maps of LV myocardium from a stack of sparse 2D cardiac magnetic resonance imaging (MRIs). However, these models often loosely consider the geometric shape structure of the myocardium. This makes the reconstructed activation maps suboptimal; hence leading to a reduced accuracy of predicting the late activating regions of hearts. In this paper, we propose to use shape-constrained diffusion models to better reconstruct a 3D LMA map, given a limited number of 2D cardiac MRI slices. In contrast to previous methods that primarily rely on spatial correlations of image intensities for 3D reconstruction, our model leverages object shape as priors learned from the training data to guide the reconstruction process. To achieve this, we develop a joint learning network that simultaneously learns a mean shape under deformation models. Each reconstructed image is then considered as a deformed variant of the mean shape. To validate the performance of our model, we train and test the proposed framework on a publicly available mesh dataset of 3D myocardium and compare it with state-of-the-art deep learning-based reconstruction models. Experimental results show that our model achieves superior performance in reconstructing the 3D LMA maps as compared to the state-of-the-art models.} }
Endnote
%0 Conference Paper %T Activation From Sparse 2D Cardiac MRIs %A Nivetha Jayakumar %A Jiarui Xing %A Tonmoy Hossain %A Fred Epstein %A Kenneth Bilchick %A Miaomiao Zhang %B Proceedings of the 3rd Machine Learning for Health Symposium %C Proceedings of Machine Learning Research %D 2023 %E Stefan Hegselmann %E Antonio Parziale %E Divya Shanmugam %E Shengpu Tang %E Mercy Nyamewaa Asiedu %E Serina Chang %E Tom Hartvigsen %E Harvineet Singh %F pmlr-v225-jayakumar23a %I PMLR %P 190--200 %U https://proceedings.mlr.press/v225/jayakumar23a.html %V 225 %X Identifying regions of late mechanical activation (LMA) of the left ventricular (LV) myocardium is critical in determining the optimal pacing site for cardiac resynchronization therapy in patients with heart failure. Several deep learning-based approaches have been developed to predict 3D LMA maps of LV myocardium from a stack of sparse 2D cardiac magnetic resonance imaging (MRIs). However, these models often loosely consider the geometric shape structure of the myocardium. This makes the reconstructed activation maps suboptimal; hence leading to a reduced accuracy of predicting the late activating regions of hearts. In this paper, we propose to use shape-constrained diffusion models to better reconstruct a 3D LMA map, given a limited number of 2D cardiac MRI slices. In contrast to previous methods that primarily rely on spatial correlations of image intensities for 3D reconstruction, our model leverages object shape as priors learned from the training data to guide the reconstruction process. To achieve this, we develop a joint learning network that simultaneously learns a mean shape under deformation models. Each reconstructed image is then considered as a deformed variant of the mean shape. To validate the performance of our model, we train and test the proposed framework on a publicly available mesh dataset of 3D myocardium and compare it with state-of-the-art deep learning-based reconstruction models. Experimental results show that our model achieves superior performance in reconstructing the 3D LMA maps as compared to the state-of-the-art models.
APA
Jayakumar, N., Xing, J., Hossain, T., Epstein, F., Bilchick, K. & Zhang, M.. (2023). Activation From Sparse 2D Cardiac MRIs. Proceedings of the 3rd Machine Learning for Health Symposium, in Proceedings of Machine Learning Research 225:190-200 Available from https://proceedings.mlr.press/v225/jayakumar23a.html.

Related Material