[edit]
Neural machine translation for automated feedback on children’s early-stage writing
Proceedings of the 5th Northern Lights Deep Learning Conference ({NLDL}), PMLR 233:104-112, 2024.
Abstract
In this work, we address the problem of assessing and constructing feedback for early-stage writing automatically using machine learning. Early-stage writing is typically vastly different from conventional writing due to phonetic spelling and lack of proper grammar, punctuation, spacing etc. Consequently, early-stage writing is highly non-trivial to analyze using common linguistic metrics. We propose to use sequence-to-sequence models for translating early-stage writing by students into conventional writing, which allows the translated text to be analyzed using linguistic metrics. Furthermore, we propose a novel robust likelihood to mitigate the effect of label noise in the dataset. We investigate the proposed methods using a set of numerical experiments and demonstrate that the conventional text can be predicted with high accuracy.