Closed-Loop Transcription via Convolutional Sparse Coding

Xili Dai, Ke Chen, Shengbang Tong, Jingyuan Zhang, Xingjian Gao, Mingyang Li, Druv Pai, Yuexiang Zhai, Xiaojun Yuan, Heung-Yeung Shum, Lionel Ni, Yi Ma
Conference on Parsimony and Learning, PMLR 234:570-589, 2024.

Abstract

Autoencoding has achieved great empirical success as a framework for learning generative models for natural images. Autoencoders often use generic deep networks as the encoder or decoder, which are difficult to interpret, and the learned representations lack clear structure. In this work, we make the explicit assumption that the image distribution is generated from a multi-stage sparse deconvolution. The corresponding inverse map, which we use as an encoder, is a multi-stage convolution sparse coding (CSC), with each stage obtained from unrolling an optimization algorithm for solving the corresponding (convexified) sparse coding program. To avoid computational difficulties in minimizing distributional distance between the real and generated images, we utilize the recent closed-loop transcription (CTRL) framework that optimizes the rate reduction of the learned sparse representations. Conceptually, our method has high-level connections to score-matching methods such as diffusion models. Empirically, our framework demonstrates competitive performance on large-scale datasets, such as ImageNet-1K, compared to existing autoencoding and generative methods under fair conditions. Even with simpler networks and fewer computational resources, our method demonstrates high visual quality in regenerated images. More surprisingly, the learned autoencoder performs well on unseen datasets. Our method enjoys several side benefits, including more structured and interpretable representations, more stable convergence, and scalability to large datasets. Our method is arguably the first to demonstrate that a concatenation of multiple convolution sparse coding/decoding layers leads to an interpretable and effective autoencoder for modeling the distribution of large-scale natural image datasets.

Cite this Paper


BibTeX
@InProceedings{pmlr-v234-dai24a, title = {Closed-Loop Transcription via Convolutional Sparse Coding}, author = {Dai, Xili and Chen, Ke and Tong, Shengbang and Zhang, Jingyuan and Gao, Xingjian and Li, Mingyang and Pai, Druv and Zhai, Yuexiang and Yuan, Xiaojun and Shum, Heung-Yeung and Ni, Lionel and Ma, Yi}, booktitle = {Conference on Parsimony and Learning}, pages = {570--589}, year = {2024}, editor = {Chi, Yuejie and Dziugaite, Gintare Karolina and Qu, Qing and Wang, Atlas Wang and Zhu, Zhihui}, volume = {234}, series = {Proceedings of Machine Learning Research}, month = {03--06 Jan}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v234/dai24a/dai24a.pdf}, url = {https://proceedings.mlr.press/v234/dai24a.html}, abstract = {Autoencoding has achieved great empirical success as a framework for learning generative models for natural images. Autoencoders often use generic deep networks as the encoder or decoder, which are difficult to interpret, and the learned representations lack clear structure. In this work, we make the explicit assumption that the image distribution is generated from a multi-stage sparse deconvolution. The corresponding inverse map, which we use as an encoder, is a multi-stage convolution sparse coding (CSC), with each stage obtained from unrolling an optimization algorithm for solving the corresponding (convexified) sparse coding program. To avoid computational difficulties in minimizing distributional distance between the real and generated images, we utilize the recent closed-loop transcription (CTRL) framework that optimizes the rate reduction of the learned sparse representations. Conceptually, our method has high-level connections to score-matching methods such as diffusion models. Empirically, our framework demonstrates competitive performance on large-scale datasets, such as ImageNet-1K, compared to existing autoencoding and generative methods under fair conditions. Even with simpler networks and fewer computational resources, our method demonstrates high visual quality in regenerated images. More surprisingly, the learned autoencoder performs well on unseen datasets. Our method enjoys several side benefits, including more structured and interpretable representations, more stable convergence, and scalability to large datasets. Our method is arguably the first to demonstrate that a concatenation of multiple convolution sparse coding/decoding layers leads to an interpretable and effective autoencoder for modeling the distribution of large-scale natural image datasets.} }
Endnote
%0 Conference Paper %T Closed-Loop Transcription via Convolutional Sparse Coding %A Xili Dai %A Ke Chen %A Shengbang Tong %A Jingyuan Zhang %A Xingjian Gao %A Mingyang Li %A Druv Pai %A Yuexiang Zhai %A Xiaojun Yuan %A Heung-Yeung Shum %A Lionel Ni %A Yi Ma %B Conference on Parsimony and Learning %C Proceedings of Machine Learning Research %D 2024 %E Yuejie Chi %E Gintare Karolina Dziugaite %E Qing Qu %E Atlas Wang Wang %E Zhihui Zhu %F pmlr-v234-dai24a %I PMLR %P 570--589 %U https://proceedings.mlr.press/v234/dai24a.html %V 234 %X Autoencoding has achieved great empirical success as a framework for learning generative models for natural images. Autoencoders often use generic deep networks as the encoder or decoder, which are difficult to interpret, and the learned representations lack clear structure. In this work, we make the explicit assumption that the image distribution is generated from a multi-stage sparse deconvolution. The corresponding inverse map, which we use as an encoder, is a multi-stage convolution sparse coding (CSC), with each stage obtained from unrolling an optimization algorithm for solving the corresponding (convexified) sparse coding program. To avoid computational difficulties in minimizing distributional distance between the real and generated images, we utilize the recent closed-loop transcription (CTRL) framework that optimizes the rate reduction of the learned sparse representations. Conceptually, our method has high-level connections to score-matching methods such as diffusion models. Empirically, our framework demonstrates competitive performance on large-scale datasets, such as ImageNet-1K, compared to existing autoencoding and generative methods under fair conditions. Even with simpler networks and fewer computational resources, our method demonstrates high visual quality in regenerated images. More surprisingly, the learned autoencoder performs well on unseen datasets. Our method enjoys several side benefits, including more structured and interpretable representations, more stable convergence, and scalability to large datasets. Our method is arguably the first to demonstrate that a concatenation of multiple convolution sparse coding/decoding layers leads to an interpretable and effective autoencoder for modeling the distribution of large-scale natural image datasets.
APA
Dai, X., Chen, K., Tong, S., Zhang, J., Gao, X., Li, M., Pai, D., Zhai, Y., Yuan, X., Shum, H., Ni, L. & Ma, Y.. (2024). Closed-Loop Transcription via Convolutional Sparse Coding. Conference on Parsimony and Learning, in Proceedings of Machine Learning Research 234:570-589 Available from https://proceedings.mlr.press/v234/dai24a.html.

Related Material