[edit]
Learning Spanning Forests Optimally in Weighted Undirected Graphs with CUT queries
Proceedings of The 35th International Conference on Algorithmic Learning Theory, PMLR 237:785-807, 2024.
Abstract
In this paper we describe a randomized algorithm which returns a maximal spanning forest of an unknown {\em weighted} undirected graph making $O(n)$ $\mathsf{CUT}$ queries in expectation. For weighted graphs, this is optimal due to a result in [Auza and Lee, 2021] which shows an $\Omega(n)$ lower bound for zero-error randomized algorithms. These questions have been extensively studied in the past few years, especially due to the problem’s connections to symmetric submodular function minimization. We also describe a simple polynomial time deterministic algorithm that makes $O(\frac{n\log n}{\log\log n})$ queries on undirected unweighted graphs and returns a maximal spanning forest, thereby (slightly) improving upon the state-of-the-art.