[edit]
Learning multivariate temporal point processes via the time-change theorem
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR 238:3241-3249, 2024.
Abstract
Marked temporal point processes (TPPs) are a class of stochastic processes that describe the occurrence of a countable number of marked events over continuous time. In machine learning, the most common representation of marked TPPs is the univariate TPP coupled with a conditional mark distribution. Alternatively, we can represent marked TPPs as a multivariate temporal point process in which we model each sequence of marks interdependently. We introduce a learning framework for multivariate TPPs leveraging recent progress on learning univariate TPPs via time-change theorems to propose a deep-learning, invertible model for the conditional intensity. We rely neither on Monte Carlo approximation for the compensator nor on thinning for sampling. Therefore, we have a generative model that can efficiently sample the next event given a history of past events. Our models show strong alignment between the percentiles of the distribution expected from theory and the empirical ones.