Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit Feedback and Unknown Transition

Long-Fei Li, Peng Zhao, Zhi-Hua Zhou
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR 238:3061-3069, 2024.

Abstract

We study reinforcement learning with linear function approximation, unknown transition, and adversarial losses in the bandit feedback setting. Specifically, we focus on linear mixture MDPs whose transition kernel is a linear mixture model. We propose a new algorithm that attains an $\tilde{\mathcal{O}}(d\sqrt{HS^3K} + \sqrt{HSAK})$ regret with high probability, where $d$ is the dimension of feature mappings, $S$ is the size of state space, $A$ is the size of action space, $H$ is the episode length and $K$ is the number of episodes. Our result strictly improves the previous best-known $\tilde{\mathcal{O}}(dS^2 \sqrt{K} + \sqrt{HSAK})$ result in Zhao et al. (2023a) since $H \leq S$ holds by the layered MDP structure. Our advancements are primarily attributed to (\romannumeral1) a new least square estimator for the transition parameter that leverages the visit information of all states, as opposed to only one state in prior work, and (\romannumeral2) a new self-normalized concentration tailored specifically to handle non-independent noises, originally proposed in the dynamic assortment area and firstly applied in reinforcement learning to handle correlations between different states.

Cite this Paper


BibTeX
@InProceedings{pmlr-v238-li24n, title = { Improved Algorithm for Adversarial Linear Mixture {MDPs} with Bandit Feedback and Unknown Transition }, author = {Li, Long-Fei and Zhao, Peng and Zhou, Zhi-Hua}, booktitle = {Proceedings of The 27th International Conference on Artificial Intelligence and Statistics}, pages = {3061--3069}, year = {2024}, editor = {Dasgupta, Sanjoy and Mandt, Stephan and Li, Yingzhen}, volume = {238}, series = {Proceedings of Machine Learning Research}, month = {02--04 May}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v238/li24n/li24n.pdf}, url = {https://proceedings.mlr.press/v238/li24n.html}, abstract = { We study reinforcement learning with linear function approximation, unknown transition, and adversarial losses in the bandit feedback setting. Specifically, we focus on linear mixture MDPs whose transition kernel is a linear mixture model. We propose a new algorithm that attains an $\tilde{\mathcal{O}}(d\sqrt{HS^3K} + \sqrt{HSAK})$ regret with high probability, where $d$ is the dimension of feature mappings, $S$ is the size of state space, $A$ is the size of action space, $H$ is the episode length and $K$ is the number of episodes. Our result strictly improves the previous best-known $\tilde{\mathcal{O}}(dS^2 \sqrt{K} + \sqrt{HSAK})$ result in Zhao et al. (2023a) since $H \leq S$ holds by the layered MDP structure. Our advancements are primarily attributed to (\romannumeral1) a new least square estimator for the transition parameter that leverages the visit information of all states, as opposed to only one state in prior work, and (\romannumeral2) a new self-normalized concentration tailored specifically to handle non-independent noises, originally proposed in the dynamic assortment area and firstly applied in reinforcement learning to handle correlations between different states. } }
Endnote
%0 Conference Paper %T Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit Feedback and Unknown Transition %A Long-Fei Li %A Peng Zhao %A Zhi-Hua Zhou %B Proceedings of The 27th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2024 %E Sanjoy Dasgupta %E Stephan Mandt %E Yingzhen Li %F pmlr-v238-li24n %I PMLR %P 3061--3069 %U https://proceedings.mlr.press/v238/li24n.html %V 238 %X We study reinforcement learning with linear function approximation, unknown transition, and adversarial losses in the bandit feedback setting. Specifically, we focus on linear mixture MDPs whose transition kernel is a linear mixture model. We propose a new algorithm that attains an $\tilde{\mathcal{O}}(d\sqrt{HS^3K} + \sqrt{HSAK})$ regret with high probability, where $d$ is the dimension of feature mappings, $S$ is the size of state space, $A$ is the size of action space, $H$ is the episode length and $K$ is the number of episodes. Our result strictly improves the previous best-known $\tilde{\mathcal{O}}(dS^2 \sqrt{K} + \sqrt{HSAK})$ result in Zhao et al. (2023a) since $H \leq S$ holds by the layered MDP structure. Our advancements are primarily attributed to (\romannumeral1) a new least square estimator for the transition parameter that leverages the visit information of all states, as opposed to only one state in prior work, and (\romannumeral2) a new self-normalized concentration tailored specifically to handle non-independent noises, originally proposed in the dynamic assortment area and firstly applied in reinforcement learning to handle correlations between different states.
APA
Li, L., Zhao, P. & Zhou, Z.. (2024). Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit Feedback and Unknown Transition . Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 238:3061-3069 Available from https://proceedings.mlr.press/v238/li24n.html.

Related Material